First Commit of my working state
[simh.git] / AltairZ80 / nasm.h
1 /* nasm.h main header file for the Netwide Assembler: inter-module interface
2 *
3 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
4 * Julian Hall. All rights reserved. The software is
5 * redistributable under the licence given in the file "Licence"
6 * distributed in the NASM archive.
7 *
8 * initial version: 27/iii/95 by Simon Tatham
9 */
10
11 #ifndef NASM_NASM_H
12 #define NASM_NASM_H
13
14 #include <stdio.h>
15 #define NASM_VERSION_H
16 #define NASM_MAJOR_VER 0
17 #define NASM_MINOR_VER 98
18 #define NASM_SUBMINOR_VER 38
19 #define NASM_PATCHLEVEL_VER 0
20 #define NASM_VERSION_ID 0x00622600
21 #define NASM_VER "0.98.38"
22
23 #ifndef NULL
24 #define NULL 0
25 #endif
26
27 #ifndef FALSE
28 #define FALSE 0 /* comes in handy */
29 #endif
30 #ifndef TRUE
31 #define TRUE 1
32 #endif
33
34 #define NO_SEG -1L /* null segment value */
35 #define SEG_ABS 0x40000000L /* mask for far-absolute segments */
36
37 #ifndef FILENAME_MAX
38 #define FILENAME_MAX 256
39 #endif
40
41 #ifndef PREFIX_MAX
42 #define PREFIX_MAX 10
43 #endif
44
45 #ifndef POSTFIX_MAX
46 #define POSTFIX_MAX 10
47 #endif
48
49 #define IDLEN_MAX 4096
50
51 /*
52 * Name pollution problems: <time.h> on Digital UNIX pulls in some
53 * strange hardware header file which sees fit to define R_SP. We
54 * undefine it here so as not to break the enum below.
55 */
56 #ifdef R_SP
57 #undef R_SP
58 #endif
59
60 /*
61 * We must declare the existence of this structure type up here,
62 * since we have to reference it before we define it...
63 */
64 struct ofmt;
65
66 /*
67 * -------------------------
68 * Error reporting functions
69 * -------------------------
70 */
71
72 /*
73 * An error reporting function should look like this.
74 */
75 typedef void (*efunc) (int severity, const char *fmt, ...);
76
77 /*
78 * These are the error severity codes which get passed as the first
79 * argument to an efunc.
80 */
81
82 #define ERR_DEBUG 0x00000008 /* put out debugging message */
83 #define ERR_WARNING 0x00000000 /* warn only: no further action */
84 #define ERR_NONFATAL 0x00000001 /* terminate assembly after phase */
85 #define ERR_FATAL 0x00000002 /* instantly fatal: exit with error */
86 #define ERR_PANIC 0x00000003 /* internal error: panic instantly
87 * and dump core for reference */
88 #define ERR_MASK 0x0000000F /* mask off the above codes */
89 #define ERR_NOFILE 0x00000010 /* don't give source file name/line */
90 #define ERR_USAGE 0x00000020 /* print a usage message */
91 #define ERR_PASS1 0x00000040 /* only print this error on pass one */
92
93 /*
94 * These codes define specific types of suppressible warning.
95 */
96
97 #define ERR_WARN_MASK 0x0000FF00 /* the mask for this feature */
98 #define ERR_WARN_SHR 8 /* how far to shift right */
99
100 #define ERR_WARN_MNP 0x00000100 /* macro-num-parameters warning */
101 #define ERR_WARN_MSR 0x00000200 /* macro self-reference */
102 #define ERR_WARN_OL 0x00000300 /* orphan label (no colon, and
103 * alone on line) */
104 #define ERR_WARN_NOV 0x00000400 /* numeric overflow */
105 #define ERR_WARN_GNUELF 0x00000500 /* using GNU ELF extensions */
106 #define ERR_WARN_MAX 5 /* the highest numbered one */
107
108 /*
109 * -----------------------
110 * Other function typedefs
111 * -----------------------
112 */
113
114 /*
115 * A label-lookup function should look like this.
116 */
117 typedef int (*lfunc) (char *label, long *segment, long *offset);
118
119 /*
120 * And a label-definition function like this. The boolean parameter
121 * `is_norm' states whether the label is a `normal' label (which
122 * should affect the local-label system), or something odder like
123 * an EQU or a segment-base symbol, which shouldn't.
124 */
125 typedef void (*ldfunc) (char *label, long segment, long offset, char *special,
126 int is_norm, int isextrn, struct ofmt *ofmt,
127 efunc error);
128
129 /*
130 * List-file generators should look like this:
131 */
132 typedef struct {
133 /*
134 * Called to initialise the listing file generator. Before this
135 * is called, the other routines will silently do nothing when
136 * called. The `char *' parameter is the file name to write the
137 * listing to.
138 */
139 void (*init) (char *, efunc);
140
141 /*
142 * Called to clear stuff up and close the listing file.
143 */
144 void (*cleanup) (void);
145
146 /*
147 * Called to output binary data. Parameters are: the offset;
148 * the data; the data type. Data types are similar to the
149 * output-format interface, only OUT_ADDRESS will _always_ be
150 * displayed as if it's relocatable, so ensure that any non-
151 * relocatable address has been converted to OUT_RAWDATA by
152 * then. Note that OUT_RAWDATA+0 is a valid data type, and is a
153 * dummy call used to give the listing generator an offset to
154 * work with when doing things like uplevel(LIST_TIMES) or
155 * uplevel(LIST_INCBIN).
156 */
157 void (*output) (long, const void *, unsigned long);
158
159 /*
160 * Called to send a text line to the listing generator. The
161 * `int' parameter is LIST_READ or LIST_MACRO depending on
162 * whether the line came directly from an input file or is the
163 * result of a multi-line macro expansion.
164 */
165 void (*line) (int, char *);
166
167 /*
168 * Called to change one of the various levelled mechanisms in
169 * the listing generator. LIST_INCLUDE and LIST_MACRO can be
170 * used to increase the nesting level of include files and
171 * macro expansions; LIST_TIMES and LIST_INCBIN switch on the
172 * two binary-output-suppression mechanisms for large-scale
173 * pseudo-instructions.
174 *
175 * LIST_MACRO_NOLIST is synonymous with LIST_MACRO except that
176 * it indicates the beginning of the expansion of a `nolist'
177 * macro, so anything under that level won't be expanded unless
178 * it includes another file.
179 */
180 void (*uplevel) (int);
181
182 /*
183 * Reverse the effects of uplevel.
184 */
185 void (*downlevel) (int);
186 } ListGen;
187
188 /*
189 * The expression evaluator must be passed a scanner function; a
190 * standard scanner is provided as part of nasmlib.c. The
191 * preprocessor will use a different one. Scanners, and the
192 * token-value structures they return, look like this.
193 *
194 * The return value from the scanner is always a copy of the
195 * `t_type' field in the structure.
196 */
197 struct tokenval {
198 int t_type;
199 long t_integer, t_inttwo;
200 char *t_charptr;
201 };
202 typedef int (*scanner) (void *private_data, struct tokenval *tv);
203
204 /*
205 * Token types returned by the scanner, in addition to ordinary
206 * ASCII character values, and zero for end-of-string.
207 */
208 enum { /* token types, other than chars */
209 TOKEN_INVALID = -1, /* a placeholder value */
210 TOKEN_EOS = 0, /* end of string */
211 TOKEN_EQ = '=', TOKEN_GT = '>', TOKEN_LT = '<', /* aliases */
212 TOKEN_ID = 256, TOKEN_NUM, TOKEN_REG, TOKEN_INSN, /* major token types */
213 TOKEN_ERRNUM, /* numeric constant with error in */
214 TOKEN_HERE, TOKEN_BASE, /* $ and $$ */
215 TOKEN_SPECIAL, /* BYTE, WORD, DWORD, FAR, NEAR, etc */
216 TOKEN_PREFIX, /* A32, O16, LOCK, REPNZ, TIMES, etc */
217 TOKEN_SHL, TOKEN_SHR, /* << and >> */
218 TOKEN_SDIV, TOKEN_SMOD, /* // and %% */
219 TOKEN_GE, TOKEN_LE, TOKEN_NE, /* >=, <= and <> (!= is same as <>) */
220 TOKEN_DBL_AND, TOKEN_DBL_OR, TOKEN_DBL_XOR, /* &&, || and ^^ */
221 TOKEN_SEG, TOKEN_WRT, /* SEG and WRT */
222 TOKEN_FLOAT /* floating-point constant */
223 };
224
225 typedef struct {
226 long segment;
227 long offset;
228 int known;
229 } loc_t;
230
231 /*
232 * Expression-evaluator datatype. Expressions, within the
233 * evaluator, are stored as an array of these beasts, terminated by
234 * a record with type==0. Mostly, it's a vector type: each type
235 * denotes some kind of a component, and the value denotes the
236 * multiple of that component present in the expression. The
237 * exception is the WRT type, whose `value' field denotes the
238 * segment to which the expression is relative. These segments will
239 * be segment-base types, i.e. either odd segment values or SEG_ABS
240 * types. So it is still valid to assume that anything with a
241 * `value' field of zero is insignificant.
242 */
243 typedef struct {
244 long type; /* a register, or EXPR_xxx */
245 long value; /* must be >= 32 bits */
246 } expr;
247
248 /*
249 * The evaluator can also return hints about which of two registers
250 * used in an expression should be the base register. See also the
251 * `operand' structure.
252 */
253 struct eval_hints {
254 int base;
255 int type;
256 };
257
258 /*
259 * The actual expression evaluator function looks like this. When
260 * called, it expects the first token of its expression to already
261 * be in `*tv'; if it is not, set tv->t_type to TOKEN_INVALID and
262 * it will start by calling the scanner.
263 *
264 * If a forward reference happens during evaluation, the evaluator
265 * must set `*fwref' to TRUE if `fwref' is non-NULL.
266 *
267 * `critical' is non-zero if the expression may not contain forward
268 * references. The evaluator will report its own error if this
269 * occurs; if `critical' is 1, the error will be "symbol not
270 * defined before use", whereas if `critical' is 2, the error will
271 * be "symbol undefined".
272 *
273 * If `critical' has bit 8 set (in addition to its main value: 0x101
274 * and 0x102 correspond to 1 and 2) then an extended expression
275 * syntax is recognised, in which relational operators such as =, <
276 * and >= are accepted, as well as low-precedence logical operators
277 * &&, ^^ and ||.
278 *
279 * If `hints' is non-NULL, it gets filled in with some hints as to
280 * the base register in complex effective addresses.
281 */
282 #define CRITICAL 0x100
283 typedef expr *(*evalfunc) (scanner sc, void *scprivate, struct tokenval *tv,
284 int *fwref, int critical, efunc error,
285 struct eval_hints *hints);
286
287 /*
288 * Special values for expr->type. ASSUMPTION MADE HERE: the number
289 * of distinct register names (i.e. possible "type" fields for an
290 * expr structure) does not exceed 124 (EXPR_REG_START through
291 * EXPR_REG_END).
292 */
293 #define EXPR_REG_START 1
294 #define EXPR_REG_END 124
295 #define EXPR_UNKNOWN 125L /* for forward references */
296 #define EXPR_SIMPLE 126L
297 #define EXPR_WRT 127L
298 #define EXPR_SEGBASE 128L
299
300 /*
301 * Preprocessors ought to look like this:
302 */
303 typedef struct {
304 /*
305 * Called at the start of a pass; given a file name, the number
306 * of the pass, an error reporting function, an evaluator
307 * function, and a listing generator to talk to.
308 */
309 void (*reset) (char *, int, efunc, evalfunc, ListGen *);
310
311 /*
312 * Called to fetch a line of preprocessed source. The line
313 * returned has been malloc'ed, and so should be freed after
314 * use.
315 */
316 char *(*getline) (void);
317
318 /*
319 * Called at the end of a pass.
320 */
321 void (*cleanup) (int);
322 } Preproc;
323
324 /*
325 * ----------------------------------------------------------------
326 * Some lexical properties of the NASM source language, included
327 * here because they are shared between the parser and preprocessor
328 * ----------------------------------------------------------------
329 */
330
331 /*
332 * isidstart matches any character that may start an identifier, and isidchar
333 * matches any character that may appear at places other than the start of an
334 * identifier. E.g. a period may only appear at the start of an identifier
335 * (for local labels), whereas a number may appear anywhere *but* at the
336 * start.
337 */
338
339 #define isidstart(c) ( isalpha(c) || (c)=='_' || (c)=='.' || (c)=='?' \
340 || (c)=='@' )
341 #define isidchar(c) ( isidstart(c) || isdigit(c) || (c)=='$' || (c)=='#' \
342 || (c)=='~' )
343
344 /* Ditto for numeric constants. */
345
346 #define isnumstart(c) ( isdigit(c) || (c)=='$' )
347 #define isnumchar(c) ( isalnum(c) )
348
349 /* This returns the numeric value of a given 'digit'. */
350
351 #define numvalue(c) ((c)>='a' ? (c)-'a'+10 : (c)>='A' ? (c)-'A'+10 : (c)-'0')
352
353 /*
354 * Data-type flags that get passed to listing-file routines.
355 */
356 enum {
357 LIST_READ, LIST_MACRO, LIST_MACRO_NOLIST, LIST_INCLUDE,
358 LIST_INCBIN, LIST_TIMES
359 };
360
361 /*
362 * -----------------------------------------------------------
363 * Format of the `insn' structure returned from `parser.c' and
364 * passed into `assemble.c'
365 * -----------------------------------------------------------
366 */
367
368 /*
369 * Here we define the operand types. These are implemented as bit
370 * masks, since some are subsets of others; e.g. AX in a MOV
371 * instruction is a special operand type, whereas AX in other
372 * contexts is just another 16-bit register. (Also, consider CL in
373 * shift instructions, DX in OUT, etc.)
374 */
375
376 /* size, and other attributes, of the operand */
377 #define BITS8 0x00000001L
378 #define BITS16 0x00000002L
379 #define BITS32 0x00000004L
380 #define BITS64 0x00000008L /* FPU only */
381 #define BITS80 0x00000010L /* FPU only */
382 #define FAR 0x00000020L /* grotty: this means 16:16 or */
383 /* 16:32, like in CALL/JMP */
384 #define NEAR 0x00000040L
385 #define SHORT 0x00000080L /* and this means what it says :) */
386
387 #define SIZE_MASK 0x000000FFL /* all the size attributes */
388 #define NON_SIZE (~SIZE_MASK)
389
390 #define TO 0x00000100L /* reverse effect in FADD, FSUB &c */
391 #define COLON 0x00000200L /* operand is followed by a colon */
392 #define STRICT 0x00000400L /* do not optimize this operand */
393
394 /* type of operand: memory reference, register, etc. */
395 #define MEMORY 0x00204000L
396 #define REGISTER 0x00001000L /* register number in 'basereg' */
397 #define IMMEDIATE 0x00002000L
398
399 #define REGMEM 0x00200000L /* for r/m, ie EA, operands */
400 #define REGNORM 0x00201000L /* 'normal' reg, qualifies as EA */
401 #define REG8 0x00201001L
402 #define REG16 0x00201002L
403 #define REG32 0x00201004L
404 #define MMXREG 0x00201008L /* MMX registers */
405 #define XMMREG 0x00201010L /* XMM Katmai reg */
406 #define FPUREG 0x01000000L /* floating point stack registers */
407 #define FPU0 0x01000800L /* FPU stack register zero */
408
409 /* special register operands: these may be treated differently */
410 #define REG_SMASK 0x00070000L /* a mask for the following */
411 #define REG_ACCUM 0x00211000L /* accumulator: AL, AX or EAX */
412 #define REG_AL 0x00211001L /* REG_ACCUM | BITSxx */
413 #define REG_AX 0x00211002L /* ditto */
414 #define REG_EAX 0x00211004L /* and again */
415 #define REG_COUNT 0x00221000L /* counter: CL, CX or ECX */
416 #define REG_CL 0x00221001L /* REG_COUNT | BITSxx */
417 #define REG_CX 0x00221002L /* ditto */
418 #define REG_ECX 0x00221004L /* another one */
419 #define REG_DL 0x00241001L
420 #define REG_DX 0x00241002L
421 #define REG_EDX 0x00241004L
422 #define REG_SREG 0x00081002L /* any segment register */
423 #define REG_CS 0x01081002L /* CS */
424 #define REG_DESS 0x02081002L /* DS, ES, SS (non-CS 86 registers) */
425 #define REG_FSGS 0x04081002L /* FS, GS (386 extended registers) */
426 #define REG_SEG67 0x08081002L /* Non-implemented segment registers */
427 #define REG_CDT 0x00101004L /* CRn, DRn and TRn */
428 #define REG_CREG 0x08101004L /* CRn */
429 #define REG_DREG 0x10101004L /* DRn */
430 #define REG_TREG 0x20101004L /* TRn */
431
432 /* special type of EA */
433 #define MEM_OFFS 0x00604000L /* simple [address] offset */
434
435 /* special type of immediate operand */
436 #define ONENESS 0x00800000L /* so UNITY == IMMEDIATE | ONENESS */
437 #define UNITY 0x00802000L /* for shift/rotate instructions */
438 #define BYTENESS 0x40000000L /* so SBYTE == IMMEDIATE | BYTENESS */
439 #define SBYTE 0x40002000L /* for op r16/32,immediate instrs. */
440
441 /* Register names automatically generated from regs.dat */
442 /* automatically generated from ./regs.dat - do not edit */
443 enum reg_enum {
444 R_AH = EXPR_REG_START,
445 R_AL,
446 R_AX,
447 R_BH,
448 R_BL,
449 R_BP,
450 R_BX,
451 R_CH,
452 R_CL,
453 R_CR0,
454 R_CR1,
455 R_CR2,
456 R_CR3,
457 R_CR4,
458 R_CR5,
459 R_CR6,
460 R_CR7,
461 R_CS,
462 R_CX,
463 R_DH,
464 R_DI,
465 R_DL,
466 R_DR0,
467 R_DR1,
468 R_DR2,
469 R_DR3,
470 R_DR4,
471 R_DR5,
472 R_DR6,
473 R_DR7,
474 R_DS,
475 R_DX,
476 R_EAX,
477 R_EBP,
478 R_EBX,
479 R_ECX,
480 R_EDI,
481 R_EDX,
482 R_ES,
483 R_ESI,
484 R_ESP,
485 R_FS,
486 R_GS,
487 R_MM0,
488 R_MM1,
489 R_MM2,
490 R_MM3,
491 R_MM4,
492 R_MM5,
493 R_MM6,
494 R_MM7,
495 R_SEGR6,
496 R_SEGR7,
497 R_SI,
498 R_SP,
499 R_SS,
500 R_ST0,
501 R_ST1,
502 R_ST2,
503 R_ST3,
504 R_ST4,
505 R_ST5,
506 R_ST6,
507 R_ST7,
508 R_TR0,
509 R_TR1,
510 R_TR2,
511 R_TR3,
512 R_TR4,
513 R_TR5,
514 R_TR6,
515 R_TR7,
516 R_XMM0,
517 R_XMM1,
518 R_XMM2,
519 R_XMM3,
520 R_XMM4,
521 R_XMM5,
522 R_XMM6,
523 R_XMM7,
524 REG_ENUM_LIMIT
525 };
526
527 enum { /* condition code names */
528 C_A, C_AE, C_B, C_BE, C_C, C_E, C_G, C_GE, C_L, C_LE, C_NA, C_NAE,
529 C_NB, C_NBE, C_NC, C_NE, C_NG, C_NGE, C_NL, C_NLE, C_NO, C_NP,
530 C_NS, C_NZ, C_O, C_P, C_PE, C_PO, C_S, C_Z
531 };
532
533 /*
534 * Note that because segment registers may be used as instruction
535 * prefixes, we must ensure the enumerations for prefixes and
536 * register names do not overlap.
537 */
538 enum { /* instruction prefixes */
539 PREFIX_ENUM_START = REG_ENUM_LIMIT,
540 P_A16 = PREFIX_ENUM_START, P_A32, P_LOCK, P_O16, P_O32, P_REP, P_REPE,
541 P_REPNE, P_REPNZ, P_REPZ, P_TIMES
542 };
543
544 enum { /* extended operand types */
545 EOT_NOTHING, EOT_DB_STRING, EOT_DB_NUMBER
546 };
547
548 enum { /* special EA flags */
549 EAF_BYTEOFFS = 1, /* force offset part to byte size */
550 EAF_WORDOFFS = 2, /* force offset part to [d]word size */
551 EAF_TIMESTWO = 4 /* really do EAX*2 not EAX+EAX */
552 };
553
554 enum { /* values for `hinttype' */
555 EAH_NOHINT = 0, /* no hint at all - our discretion */
556 EAH_MAKEBASE = 1, /* try to make given reg the base */
557 EAH_NOTBASE = 2 /* try _not_ to make reg the base */
558 };
559
560 typedef struct { /* operand to an instruction */
561 long type; /* type of operand */
562 int addr_size; /* 0 means default; 16; 32 */
563 int basereg, indexreg, scale; /* registers and scale involved */
564 int hintbase, hinttype; /* hint as to real base register */
565 long segment; /* immediate segment, if needed */
566 long offset; /* any immediate number */
567 long wrt; /* segment base it's relative to */
568 int eaflags; /* special EA flags */
569 int opflags; /* see OPFLAG_* defines below */
570 } operand;
571
572 #define OPFLAG_FORWARD 1 /* operand is a forward reference */
573 #define OPFLAG_EXTERN 2 /* operand is an external reference */
574
575 typedef struct extop { /* extended operand */
576 struct extop *next; /* linked list */
577 long type; /* defined above */
578 char *stringval; /* if it's a string, then here it is */
579 int stringlen; /* ... and here's how long it is */
580 long segment; /* if it's a number/address, then... */
581 long offset; /* ... it's given here ... */
582 long wrt; /* ... and here */
583 } extop;
584
585 #define MAXPREFIX 4
586
587 typedef struct { /* an instruction itself */
588 char *label; /* the label defined, or NULL */
589 int prefixes[MAXPREFIX]; /* instruction prefixes, if any */
590 int nprefix; /* number of entries in above */
591 int opcode; /* the opcode - not just the string */
592 int condition; /* the condition code, if Jcc/SETcc */
593 int operands; /* how many operands? 0-3
594 * (more if db et al) */
595 operand oprs[3]; /* the operands, defined as above */
596 extop *eops; /* extended operands */
597 int eops_float; /* true if DD and floating */
598 long times; /* repeat count (TIMES prefix) */
599 int forw_ref; /* is there a forward reference? */
600 } insn;
601
602 enum geninfo { GI_SWITCH };
603 /*
604 * ------------------------------------------------------------
605 * The data structure defining an output format driver, and the
606 * interfaces to the functions therein.
607 * ------------------------------------------------------------
608 */
609
610 struct ofmt {
611 /*
612 * This is a short (one-liner) description of the type of
613 * output generated by the driver.
614 */
615 const char *fullname;
616
617 /*
618 * This is a single keyword used to select the driver.
619 */
620 const char *shortname;
621
622 /*
623 * this is reserved for out module specific help.
624 * It is set to NULL in all the out modules but is not implemented
625 * in the main program
626 */
627 const char *helpstring;
628
629 /*
630 * this is a pointer to the first element of the debug information
631 */
632 struct dfmt **debug_formats;
633
634 /*
635 * and a pointer to the element that is being used
636 * note: this is set to the default at compile time and changed if the
637 * -F option is selected. If developing a set of new debug formats for
638 * an output format, be sure to set this to whatever default you want
639 *
640 */
641 struct dfmt *current_dfmt;
642
643 /*
644 * This, if non-NULL, is a NULL-terminated list of `char *'s
645 * pointing to extra standard macros supplied by the object
646 * format (e.g. a sensible initial default value of __SECT__,
647 * and user-level equivalents for any format-specific
648 * directives).
649 */
650 const char **stdmac;
651
652 /*
653 * This procedure is called at the start of an output session.
654 * It tells the output format what file it will be writing to,
655 * what routine to report errors through, and how to interface
656 * to the label manager and expression evaluator if necessary.
657 * It also gives it a chance to do other initialisation.
658 */
659 void (*init) (FILE *fp, efunc error, ldfunc ldef, evalfunc eval);
660
661 /*
662 * This procedure is called to pass generic information to the
663 * object file. The first parameter gives the information type
664 * (currently only command line switches)
665 * and the second parameter gives the value. This function returns
666 * 1 if recognized, 0 if unrecognized
667 */
668 int (*setinfo)(enum geninfo type, char **string);
669
670 /*
671 * This procedure is called by assemble() to write actual
672 * generated code or data to the object file. Typically it
673 * doesn't have to actually _write_ it, just store it for
674 * later.
675 *
676 * The `type' argument specifies the type of output data, and
677 * usually the size as well: its contents are described below.
678 */
679 void (*output) (long segto, const void *data, unsigned long type,
680 long segment, long wrt);
681
682 /*
683 * This procedure is called once for every symbol defined in
684 * the module being assembled. It gives the name and value of
685 * the symbol, in NASM's terms, and indicates whether it has
686 * been declared to be global. Note that the parameter "name",
687 * when passed, will point to a piece of static storage
688 * allocated inside the label manager - it's safe to keep using
689 * that pointer, because the label manager doesn't clean up
690 * until after the output driver has.
691 *
692 * Values of `is_global' are: 0 means the symbol is local; 1
693 * means the symbol is global; 2 means the symbol is common (in
694 * which case `offset' holds the _size_ of the variable).
695 * Anything else is available for the output driver to use
696 * internally.
697 *
698 * This routine explicitly _is_ allowed to call the label
699 * manager to define further symbols, if it wants to, even
700 * though it's been called _from_ the label manager. That much
701 * re-entrancy is guaranteed in the label manager. However, the
702 * label manager will in turn call this routine, so it should
703 * be prepared to be re-entrant itself.
704 *
705 * The `special' parameter contains special information passed
706 * through from the command that defined the label: it may have
707 * been an EXTERN, a COMMON or a GLOBAL. The distinction should
708 * be obvious to the output format from the other parameters.
709 */
710 void (*symdef) (char *name, long segment, long offset, int is_global,
711 char *special);
712
713 /*
714 * This procedure is called when the source code requests a
715 * segment change. It should return the corresponding segment
716 * _number_ for the name, or NO_SEG if the name is not a valid
717 * segment name.
718 *
719 * It may also be called with NULL, in which case it is to
720 * return the _default_ section number for starting assembly in.
721 *
722 * It is allowed to modify the string it is given a pointer to.
723 *
724 * It is also allowed to specify a default instruction size for
725 * the segment, by setting `*bits' to 16 or 32. Or, if it
726 * doesn't wish to define a default, it can leave `bits' alone.
727 */
728 long (*section) (char *name, int pass, int *bits);
729
730 /*
731 * This procedure is called to modify the segment base values
732 * returned from the SEG operator. It is given a segment base
733 * value (i.e. a segment value with the low bit set), and is
734 * required to produce in return a segment value which may be
735 * different. It can map segment bases to absolute numbers by
736 * means of returning SEG_ABS types.
737 *
738 * It should return NO_SEG if the segment base cannot be
739 * determined; the evaluator (which calls this routine) is
740 * responsible for throwing an error condition if that occurs
741 * in pass two or in a critical expression.
742 */
743 long (*segbase) (long segment);
744
745 /*
746 * This procedure is called to allow the output driver to
747 * process its own specific directives. When called, it has the
748 * directive word in `directive' and the parameter string in
749 * `value'. It is called in both assembly passes, and `pass'
750 * will be either 1 or 2.
751 *
752 * This procedure should return zero if it does not _recognise_
753 * the directive, so that the main program can report an error.
754 * If it recognises the directive but then has its own errors,
755 * it should report them itself and then return non-zero. It
756 * should also return non-zero if it correctly processes the
757 * directive.
758 */
759 int (*directive) (char *directive, char *value, int pass);
760
761 /*
762 * This procedure is called before anything else - even before
763 * the "init" routine - and is passed the name of the input
764 * file from which this output file is being generated. It
765 * should return its preferred name for the output file in
766 * `outname', if outname[0] is not '\0', and do nothing to
767 * `outname' otherwise. Since it is called before the driver is
768 * properly initialised, it has to be passed its error handler
769 * separately.
770 *
771 * This procedure may also take its own copy of the input file
772 * name for use in writing the output file: it is _guaranteed_
773 * that it will be called before the "init" routine.
774 *
775 * The parameter `outname' points to an area of storage
776 * guaranteed to be at least FILENAME_MAX in size.
777 */
778 void (*filename) (char *inname, char *outname, efunc error);
779
780 /*
781 * This procedure is called after assembly finishes, to allow
782 * the output driver to clean itself up and free its memory.
783 * Typically, it will also be the point at which the object
784 * file actually gets _written_.
785 *
786 * One thing the cleanup routine should always do is to close
787 * the output file pointer.
788 */
789 void (*cleanup) (int debuginfo);
790 };
791
792 /*
793 * values for the `type' parameter to an output function. Each one
794 * must have the actual number of _bytes_ added to it.
795 *
796 * Exceptions are OUT_RELxADR, which denote an x-byte relocation
797 * which will be a relative jump. For this we need to know the
798 * distance in bytes from the start of the relocated record until
799 * the end of the containing instruction. _This_ is what is stored
800 * in the size part of the parameter, in this case.
801 *
802 * Also OUT_RESERVE denotes reservation of N bytes of BSS space,
803 * and the contents of the "data" parameter is irrelevant.
804 *
805 * The "data" parameter for the output function points to a "long",
806 * containing the address in question, unless the type is
807 * OUT_RAWDATA, in which case it points to an "unsigned char"
808 * array.
809 */
810 #define OUT_RAWDATA 0x00000000UL
811 #define OUT_ADDRESS 0x10000000UL
812 #define OUT_REL2ADR 0x20000000UL
813 #define OUT_REL4ADR 0x30000000UL
814 #define OUT_RESERVE 0x40000000UL
815 #define OUT_TYPMASK 0xF0000000UL
816 #define OUT_SIZMASK 0x0FFFFFFFUL
817
818 /*
819 * ------------------------------------------------------------
820 * The data structure defining a debug format driver, and the
821 * interfaces to the functions therein.
822 * ------------------------------------------------------------
823 */
824
825 struct dfmt {
826
827 /*
828 * This is a short (one-liner) description of the type of
829 * output generated by the driver.
830 */
831 const char *fullname;
832
833 /*
834 * This is a single keyword used to select the driver.
835 */
836 const char *shortname;
837
838
839 /*
840 * init - called initially to set up local pointer to object format,
841 * void pointer to implementation defined data, file pointer (which
842 * probably won't be used, but who knows?), and error function.
843 */
844 void (*init) (struct ofmt * of, void * id, FILE * fp, efunc error);
845
846 /*
847 * linenum - called any time there is output with a change of
848 * line number or file.
849 */
850 void (*linenum) (const char * filename, long linenumber, long segto);
851
852 /*
853 * debug_deflabel - called whenever a label is defined. Parameters
854 * are the same as to 'symdef()' in the output format. This function
855 * would be called before the output format version.
856 */
857
858 void (*debug_deflabel) (char * name, long segment, long offset,
859 int is_global, char * special);
860 /*
861 * debug_directive - called whenever a DEBUG directive other than 'LINE'
862 * is encountered. 'directive' contains the first parameter to the
863 * DEBUG directive, and params contains the rest. For example,
864 * 'DEBUG VAR _somevar:int' would translate to a call to this
865 * function with 'directive' equal to "VAR" and 'params' equal to
866 * "_somevar:int".
867 */
868 void (*debug_directive) (const char * directive, const char * params);
869
870 /*
871 * typevalue - called whenever the assembler wishes to register a type
872 * for the last defined label. This routine MUST detect if a type was
873 * already registered and not re-register it.
874 */
875 void (*debug_typevalue) (long type);
876
877 /*
878 * debug_output - called whenever output is required
879 * 'type' is the type of info required, and this is format-specific
880 */
881 void (*debug_output) (int type, void *param);
882
883 /*
884 * cleanup - called after processing of file is complete
885 */
886 void (*cleanup) (void);
887
888 };
889 /*
890 * The type definition macros
891 * for debugging
892 *
893 * low 3 bits: reserved
894 * next 5 bits: type
895 * next 24 bits: number of elements for arrays (0 for labels)
896 */
897
898 #define TY_UNKNOWN 0x00
899 #define TY_LABEL 0x08
900 #define TY_BYTE 0x10
901 #define TY_WORD 0x18
902 #define TY_DWORD 0x20
903 #define TY_FLOAT 0x28
904 #define TY_QWORD 0x30
905 #define TY_TBYTE 0x38
906 #define TY_COMMON 0xE0
907 #define TY_SEG 0xE8
908 #define TY_EXTERN 0xF0
909 #define TY_EQU 0xF8
910
911 #define TYM_TYPE(x) ((x) & 0xF8)
912 #define TYM_ELEMENTS(x) (((x) & 0xFFFFFF00) >> 8)
913
914 #define TYS_ELEMENTS(x) ((x) << 8)
915 /*
916 * -----
917 * Other
918 * -----
919 */
920
921 /*
922 * This is a useful #define which I keep meaning to use more often:
923 * the number of elements of a statically defined array.
924 */
925
926 #define elements(x) ( sizeof(x) / sizeof(*(x)) )
927
928 extern int tasm_compatible_mode;
929
930 /*
931 * This declaration passes the "pass" number to all other modules
932 * "pass0" assumes the values: 0, 0, ..., 0, 1, 2
933 * where 0 = optimizing pass
934 * 1 = pass 1
935 * 2 = pass 2
936 */
937
938 extern int pass0; /* this is globally known */
939 extern int optimizing;
940
941 #endif