1 /******************************************************************************
3 * Trennfix firmware - mm_switch.c
5 * Maerklin Motorola switch command receiver
7 * Copyright (C) 2017 Philipp Hachtmann
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
22 *****************************************************************************/
29 #include <avr/eeprom.h>
30 #include <avr/interrupt.h>
31 #include <avr/pgmspace.h>
33 #include <util/delay.h>
36 #include <config/hardware.h>
37 #include <mm/mm_switch.h>
42 * Check for stuff we need
45 #if !defined(MM_TSTART) || !defined(MM_SENSE) || !defined(MM_TIMER_INT_VECT)
47 #error Missing needed MM_... macro!
52 * Private global variables
55 #ifndef MM_USE_REGISTER_VARS
57 static volatile uint8_t bitno
= 0;
58 static uint8_t shift_command
;
59 static uint8_t shift_function
;
60 static uint8_t shift_address
;
61 static enum mm_recstate recstate
= MM_IDLE
;
62 static uint8_t sense_last
= 23;
70 * Lookup trinary nibble
72 * This was implemented using a switch statement before.
73 * Changing the lookup to a table did only add two bytes
74 * of memory and saved ca. 50 bytes program memory.
76 static const uint8_t nibble_table
[16]={
87 #define lookup_nibble(nibble) nibble_table[nibble & 0xf]
89 static uint8_t __attribute__((unused
)) lookup_decoder(uint8_t mm_byte
)
95 low
= lookup_nibble(mm_byte
>> 4);
96 high
= lookup_nibble(mm_byte
& 0xf);
99 return 9 * high
+ low
;
102 static uint8_t __attribute__((unused
)) lookup_command(uint8_t mm_command
)
106 * Check for aabbccdd condition
108 * a a b b c c d d mm_command
109 * XOR a b b c c d d 0 mm_command << 1
110 * Mask 1 0 1 0 1 0 1 0 0xaa
116 if ((mm_command
^ (mm_command
<< 1)) & 0xaa)
119 * Protocol differences:
120 * =====================
122 * I have an old "central control" 6022 and a "control unit" 6021
123 * for measurements and test. It is assumed that the 6022 outputs
124 * old MM1 format while the 6021 definitively outputs MM2 telegrams.
126 * In MM1, switch commands are different from MM2 with respect what
127 * happens if you release a button.
129 * When you press a button, both protocols send
131 * <aaaaaaaa><00><aabbcc11>
133 * where a = 1, b = 2, c = 4 and the keys are numerated from 0 to 7
134 * in the order 1 red, 1 green, 2 red, 2 green and so on.
136 * The last two bits correspond to "on" state of the button/coil.
138 * When a key is released under MM1 protocol, the sequence sent is
139 * analogue to the button down sequence:
141 * <aaaaaaaa><00><aabbcc00> where abc again represents the button's
142 * address and the last bits now signal "off".
144 * MM2 handles this differently:
145 * Whenever any key from the addressed decoder is released, the sequence
146 * <aaaaaaaa>00<00000000> is sent - not only for key 0, but for all
149 * While MM1 presents the theoretical possibility to press several keys
150 * independently and simultaneously (which my keyboard does NOT
151 * support), MM2 supports only one key at a time (besides strange
152 * sequences like "one down, another down, all up"...
154 * A decoder that strictly adheres to the MM1 standard would not work
155 * properly with MM2 control units. As far as I know all K83/K84
156 * decoders always worked with MM2 control units. That means that
157 * they reduce the commands to the possibilities of MM2 from the
160 * Possible use cases for the old protocol button release commands:
161 * - Determine if the protocol is MM1 or MM2
162 * - Implement hidden evil features into the controller which can
163 * only be summoned by old MM1 gear or selfmade control telegram
166 * What this code now actually does:
167 * =================================
169 * When key pressed (aabbcc11), it will send out the key number in the
170 * range 1-8 and 0 if it gets any key up command and therefore ignore
171 * the key number if it is transmitted with the key up command.
174 if (!(mm_command
& 0x01))
177 res
= (mm_command
& 0x80) * 1 + (mm_command
& 0x20) * 0x02
178 + (mm_command
& 0x08) * 0x04 + 1;
182 /* We will shift from right to left.
183 * XXXXXXXX XX XXXXXXXX
184 * shift_address shift_function shift_command
186 * The bits 7 downto 2 of shift_function are ignored.
188 #define SAVE_ANOTHER_40_BYTES
189 #ifdef SAVE_ANOTHER_40_BYTES
191 void shift(uint8_t value
)
193 asm("ror %[val] ; Shift value right into carry\n\t"
194 "rol %[cmd] ; and shift to command reg\n\t"
195 "mov __tmp_reg__, %[func] ; save function value \n\t"
196 "rol %[func] ; Shift up function value\n\t"
197 "ror __tmp_reg__ ; shift bit 1\n\t"
198 "ror __tmp_reg__ ; down to carry\n\t"
199 "rol %[addr] ; And we're at the address\n\t"
200 : [cmd
] "=r" (shift_command
), [func
] "=r" (shift_function
),
201 [addr
] "=r" (shift_address
)
202 : "0" (shift_command
), "1" (shift_function
),
203 "2" (shift_address
), [val
] "r" (value
)
207 #else /* This is what we do to shift */
209 void shift(uint8_t value
)
212 if (shift_function
& 2)
214 shift_function
<<= 1;
215 if (shift_command
& 0x80)
223 static volatile uint8_t mm_rec_tolerated_timeouts
;
228 static uint8_t style
;
230 void mm_feed_bit(uint8_t bit
, uint8_t seen_style
)
232 static volatile uint8_t shift_command_first
;
233 static volatile uint8_t shift_function_first
;
234 static volatile uint8_t shift_address_first
;
238 #ifdef MM_FILTER_REPEATED
239 static uint8_t address_last
= 0xff;
240 static uint8_t function_last
= 0xff;
241 static uint8_t command_last
= 0xff;
247 if (seen_style
!= style
) {
254 if (bitno
== 18) { /* Save first received word */
255 shift_address_first
= shift_address
;
256 shift_function_first
= shift_function
;
257 shift_command_first
= shift_command
;
258 mm_rec_tolerated_timeouts
= 18;
263 if ((shift_command
== shift_command_first
) &&
264 (shift_address
== shift_address_first
) &&
265 (shift_function
== shift_function_first
)) {
268 #ifdef MM_FILTER_REPEATED
269 if ((shift_address
!= address_last
) || (shift_command
!= command_last
) ||
270 shift_function
!= function_last
) {
272 if (style
== MM_SLOW
) {
273 address
= lookup_decoder(shift_address
);
274 mm_switch_drive(address
, shift_function
, shift_command
);
278 command
= lookup_command(shift_command
);
279 mm_switch_command(address
, command
);
282 #ifdef MM_FILTER_REPEATED
284 address_last
= shift_address
;
285 function_last
= shift_function
;
286 command_last
= shift_command
;
293 ISR(__vector_timer_extra
) {
298 * The timeout interrupt vector does nothing else
299 * than incrementing the time_h round counter.
301 * It is written in naked assembly because we want to avoid pushing
302 * and popping of all upper registers.
304 void __attribute__((naked
)) MM_TIMER_INT_VECT(void)
306 asm("push r0 ; save r0 \n\t"
307 "in r0, __SREG__ \n\t"
308 #ifdef MM_USE_REGISTER_VARS
312 "lds r1, time_h \n\t"
314 "sts time_h, r1 \n\t"
317 "out __SREG__, r0 \n\t"
319 // "rjmp __vector_timer_extra \n\t"
321 #ifdef MM_USE_REGISTER_VARS
328 * Another naked interrupt trampoline
330 * Here we first save the timer value as fast as possible, then we jump (!)
331 * into the "official" interrupt handler with all its decorations.
333 void __attribute__((naked
)) PCINT0_vect(void)
335 #ifdef MM_USE_REGISTER_VARS
336 asm("in %[tl], %[tmr] \n\t"
337 "rjmp __vector_pinchange \n\t"
338 :: [tl
] "r" (time_l
), [tmr
] "I" (_SFR_IO_ADDR(TCNT0
))
343 "sts time_l, r0 \n\t"
345 "rjmp __vector_pinchange \n\t"
346 :: [tmr
] "I" (_SFR_IO_ADDR(TCNT0
))
351 /* Pin change interrupt vector, here we have a bit more time */
352 ISR(__vector_pinchange
){
353 /* First kill off that timer */
355 MM_TSTART
; /* Restart timer */
357 /* Account for not yet handled timer overflow */
358 if (TIFR
& _BV(TOV0
)) {
365 uint16_t duration
= time_h
<< 8;
370 * The nominal length of a bit cycle is 208 us.
371 * This consists of 8 parts, each 26 us:
374 * That means that the 1 pulse is 7 * 26 = 182us
375 * and the short pulse is 1 * 26 = 26us.
377 * Reality seems to look not as that exact. I measure
378 * 26us for the clock pulse, but 196 for the long pulse.
382 #define D_MATCH(d, v) ((duration > (d * 2 - 2 * v)) && (duration < (d * 2 + 2 * v)))
384 static uint8_t mm_positive
= 1;
385 static uint8_t last_was_short
= 0;
387 if (D_MATCH(26, 4)) {
389 mm_positive
= bit_val
;
392 if (bit_val
== mm_positive
)
393 mm_feed_bit(0, MM_SLOW
);
398 if (style
== MM_SLOW
) {
399 if (duration
> 4000) { /* Maerklin inter package timeout 2ms */
404 if (duration
> 2000) { /* Maerklin inter package timeout 1ms */
410 if (bit_val
!= mm_positive
)
413 if (D_MATCH(182, 25)) mm_feed_bit(1, MM_SLOW
);
415 if (D_MATCH(91, 17)) {mm_feed_bit(1, MM_FAST
);}
416 if (D_MATCH(13, 4)) {mm_feed_bit(0, MM_FAST
);}
419 mm_switch_pinchange_callback();
422 void __attribute__((weak
))mm_switch_pinchange_callback(void)
426 void __attribute__((weak
))mm_switch_drive(uint8_t decoder
, uint8_t function
,
431 void __attribute__((weak
))mm_switch_command(uint8_t address
, uint8_t command
)
437 /******************************************************************************