0S/8
System Reference Manual

Order No. AA-H607A-TA

ABSTRACT

This document describes OS/8 system conventions,
keyboard commands, and utility programs.

SUPERSESSION/UPDATE INFORMATION: This manual supersedes sections of 0S/8 Handbook

{DEC-S8-OSHBA-A-D) and the 0S/8 Handbook
Update (DEC-S8-OSHBA-A-DN4).

OPERATING SYSTEM AND VERSION: 0S/8 v3D

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, March 1979

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright C) 1979 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0S/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS-10
VAX VMS SBI
DECnet IAS PDT
DATATRIEVE TRAX

CONTENTS

DOCUMENTATION SET FOR 0S/8

CHAPTER

CHAPTER

CHAPTER

1

L] L[] . L[] L]
W

WWwWwwwwwww

WWwwwww
e & s o s .
i el el el el el WodJaunnuuou e
WNHOOO
N -

w
=
-3

3.15.1
3.15.2

OVERVIEW

INTRODUCTION TO 0S/8

05/8 I/0 DEVICES

HARDWARE CONFIGURATIONS
SYSTEM SOFTWARE COMPONENTS

SYSTEM CONVENTIONS

PERMANENT DEVICE NAMES
FILE NAMES AND EXTENSIONS
UNITS OF STORAGE

0S5/8 KEYBOARD COMMANDS

INTRODUCTION
COMMAND FORMAT
COMMAND AND FILE OPTIONS
Command Options
The Slash Construction -- Single-Letter
Options
The Parenthesis Construction =-- Multiple-
Letter Options
The Equal Sign Construction -- Octal
Number Options
File Options
Additional Switch Options -- the Dash
Construction
COMMANDS THAT REMEMBER FILE SPECIFICATIONS
USING WILDCARDS
Wildcards in Input Filenames
Wildcards in Output Specifications
Warnings and Suggestions
INDIRECT COMMANDS
USING DEFAULTS
GETTING HELP -- THE HELP COMMAND
ENTERING A COMMAND LINE -- CORRECTING AND
PREVENTING ERRORS
ASSIGN
Canceling a Logical Name
Checking for Duplicate Names
BACKSPACE
BASIC
BOOT
CCL
COMPARE
COMPARE Output
COMPARE Options

iii

w W
I

[}
- WWOWOoR~I~IJAO (5,08,

CONTENTS (Cont.)

COMPILE
COMPILE Input
COMPILE Output
Output File 1 -- the Binary Code
Output File 2 -- the Listing File
COMPILE Options and Errors
COPY
COPY Input
COPY Output
COPY Terminal Display
Predeletion and Postdeletion
COPY Options
CREATE
CREF
CREF Options
DATE
DEASSIGN
DELETE
The Conditional DELETE
DELETE Terminal Display
DELETE Options
DIRECT
DIRECT Output
DIRECT Options
DUPLICATE
EDIT
Recalling Arguments
EOF
EXECUTE
GET
HELP
LIST
LIST Options
LOAD
MAKE
MAP
MAP Output
MAP Options
MEMORY
MUNG
oDT
PAL
PRINT
PUNCH
R
RENAME
RENAME Options
RES
REWIND
RUN
SAVE
The Job Status Word
SET
SKIP
START
SQUISH
SUBMIT

iv

Page

3-19
3-19
3-20
3-20
3-21
3-21
3-22
3-22
3-22
3-22
3-23
3-23
3-24
3-25
3-25
3-26
3-27
3-28
3-28
3-29
3-29
3-30
3-30
3-30
3-32
3-33
3-33
3-34
3-35
3-36
3-37
3-38
3-38
3-39
3-40
3-41
3-41
3-41
3-43
3-44
3-45
3-46
3-47
3-48
3-49
3-50
3-50
3-51
3-52
3-53
3-54
3-55
3-56
3-57
3-58
3-59
3-60

CHAPTER

CHAPTER

CHAPTER

3.51
3.52
3.53
3.53.1
3.54
3.55
3.56
3.57

-9

LI N e e & & & s o e 9
NN NNONNDNNDNNND
* o o o v o
N UL WN

[R R I O T Y Y S
.
SNoONEe R RWWWWWWWWWNOE

o oo O\,
« s .
w N =
s e e »

U W N

DO O
o« o s s & ® o o o @
OJONEWWWWWNNNNDNDND
o o s » .
Lo O]

CONTENTS (Cont.)

TECO
TERMINATE
TYPE

TYPE Options
UA, UB, and UC
UNLOAD
VERSION
ZERO

THE 0S/8 SYMBOLIC EDITOR

INTRODUCTION

CALLING THE EDITOR

MODES OF OPERATION
Text Mode
Command Mode
Input Commands
Listing Commands
Output Commands
Editing Commands
Search Commands

Special Command Mode Characters

SEARCHING A TEXT

Single-Character Search -- the S$§ Command

The Character String Search
Intrabuffer String Search

Interbuffer String Search ~-~ J Command

EDITOR OPTIONS
EDITOR ERROR MESSAGES

SUMMARY OF EDITOR COMMANDS AND SPECIAL

CHARACTERS
THE COMMAND DECODER

ENTERING I/O SPECIFICATIONS
COMMAND DECODER ERROR MESSAGES
THE CCL AND THE COMMAND DECODER

BATCH

INTRODUCTION
BATCH PROCESSING UNDER 0S/8
Input Files
Output Files
I1/0 Devices
Spooling
Entering File Specifications
BATCH MONITOR COMMANDS
Defining a BATCH Job
Using 0S/8 Keyboard Commands
Using the Command Decoder
Additional Features
THE BATCH INPUT FILE
BATCH ERROR MESSAGES
RUNNING BATCH FROM PUNCHED CARDS
RESTRICTIONS UNDER 0S/8 BATCH
BATCH DEMONSTRATION PROGRAM

Page

3-61
3-62
3-63
3-63
3-64
3-65
3-66
3-67

-9
!
=

[|
O OO U W N

Lo O - T
|

<2}
|

LI R T T T |

[
FRHRONOOUBSNNNNNRHE

w N =

O\O\O\O\O\O\O\O\TO\O\O\O\O\O\O\O\

CHAPTER 7

CHAPTER 8

CHAPTER

AUMUUVUTNEWWWWWWWWWWWWWWWwWwWwWwwwwN -

NHEHEMRFREEEEODI0U S WN -

QWY NBWNEFO

CHAPTER 10

CONTENTS (Cont.)

LOADING AND SAVING BATCH

LOADING AND SAVING PROGRAMS FOR USE UNDER
BATCH

TRANSFERRING THE SYSTEM SOFTWARE FROM
CASSETTE TO THE SYSTEM DEVICE

RUNNING FORTRAN IV UNDER BATCH IN 32K

BITMAP

FILE AND DEVICE SPECIFICATIONS
BITMAP OUTPUT

BITMAP ERROR MESSAGES

ASSEMBLY INSTRUCTIONS

BOOT

BOOTING WITH BOOT
BOOT PRIORITIES

BUILD

0S/8 DEVICE HANDLERS

Cassette Systems

Paper Tape Systems
CALLING AND USING BUILD
BUILD COMMANDS

The Hyphen Construction

PRINT

QLIST

LOAD

INSERT

DELETE

REPLACE

UNLOAD

NAME

ALTER

EXAMINE

DSK

CORE

DCB

CTL

VERSION

SIZE

SYSTEM

BUILD

BOOTSTRAP
BUILD ERROR MESSAGES
BUILD DEVICE HANDLER FORMAT

Header Block

Descriptor Block

Breakdown of DCB Word

Entry Point Offset
CREATING A SYSTEM HANDLER

CASSETTE AND MAGNETIC TAPE POSITIONER
(CAMP)

vi

~J
[
[

NN
1
wWwN =

GIJGJGJ
1]
(SR

[T R I | |
OO 00O WW {and

|
[A A]
wwn

W W WWOWWWOWOWOUWOWY OO O
[}

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

10.1

10.1.1
10.1.2
10.1.3
10.1.4
10.1.5
10.1.6
10.1.7
10.2

11

11.1
11.1.1
11.1.2
11.2
11.3
11.4
11.5

12

12.1
12.1.1
12.2
12.3

13

13.1

13.1.1
13.1.2
13.1.3
13.1.4
13.2

13.2.1
13.2.2
13.2.3
13.3

13.3.1
13.4

13.4.1
13.4.2

14

14.1
14.2
14.3

15

15.1
15.2
15.3
15.4
15.5

CONTENTS (Cont.)

CAMP COMMANDS
BACKSPACE Command
EOF Command
HELP Command
REWIND Command
SKIP Command
UNLOAD Command
VERSION Command
CAMP ERROR MESSAGE SUMMARY

CROSS~REFERENCE PROGRAM (CREF)

CALLING AND USING CREF
CREF Options
Examples of CREF Usage
PSEUDO-~OP HANDLING
INTERPRETING CREF OUTPUT
RESTRICTIONS
CREF ERROR MESSAGES

DIRECT

CALLING AND USING DIRECT
DIRECT Options

DIRECT EXAMPLES

DIRECT ERROR MESSAGES

DECTAPE COPY AND FORMAT PROGRAMS

DTFRMT

Loading Procedure

Using the Program

Error Messages

Details of DTFRMT Operation and Storage
TDFRMT

Operating Procedures

Error Messages

Details of TDFRMT Operation and Storage
DTCOPY

Error Messages
TDCOPY

Error Messages

Details of Operation

DUMP

FORM FEEDS
ADDING THE DUMP HANDLER TO YOUR SYSTEM
FORMAT OF THE DUMP

EPIC

LOADING EPIC
RESTART PROCEDURE
PAPER TAPE FACILITY
COMMAND FORMAT
DEFAULT OPTIONS

vii

Page

10-1
10-1
10-2
10-2
10-3
10-3
10-4
10-4
10-5

11-1

11-1
11-1
11-2
11-3
11-3
11-5
11-6

12-1

12-1
12-2
12-3
12-5

13-1

13-1
13-1
13-1
13-3
13-4
13-5
13-5
13-7
13-8
13-10
13-11
13-12
13-13
13-15

14-1

14-2
14-2
14-2

15-1

15-1
15-2
15-2
15-2
15-3

CHAPTER

CHAPTER

15.6
15.7
15.8
15.9
15.9.1
15.9.2
15.10
15.11
15.12
15.13
15.14

16

16.1
16.1.1
16.1.2
16.2
l6.2.1
16.2.2
16.2.3
16.2.4
16.3
16.3.1
16.4

CONTENTS (Cont.)

ERROR CONDITIONS

LOW SPEED I/0

DEVICE CODES

EDITING CAPABILITY
Initial Command Format
Editing Commands

COMPARE CAPABILITY

ERROR MESSAGES

PAPER TAPE FORMAT

LOADING EPIC FROM PAPER TAPE

EPIC ASSEMBLY INSTRUCTIONS

FILE-ORIENTED TRANSFER PROGRAM (FOTP)

CALLING FOTP
Input Specifications
Output Specifications
USING FOTP
Additional FOTP Commands
Advantages of Predeletion
Advantages of Postdeletion
Control Characters
FOTP OPTIONS
Examples of FOTP Specification Commands
ERROR MESSAGES

FUTIL

INTRODUCTION

Special Characters Used in FUTIL

Running FUTIL

Access Method

Referencing Words on the Device

Numeric Item (or Numbers)

Errors and Error Messages
SINGLE-CHARACTER (ODT-LIKE) COMMANDS

Symbolic Output Formats
WORD-TYPE COMMANDS

Output Formats

DUMP

LIST

MODIFY

Search Limits

WORD (Search)

STRING (Search)

SMASK

SET

SHOW

FILE

WRITE

SCAN

REWIND

File Output

OPEN

CLOSE

Batch Operation

IF

viii

Page

15-4
15-4
15-4
15-5
15-5
15-5
15-8
15-8
15-10
15-11
15-11

16-1

l6-1
l6-1
16-3
16-3
16-5
16-7
16-7
l6-7
16-7
16-10
16-11

17-1

17-1
17-1
17-2
17-3
17-5
17-6
17-7
17-7
17-9
17-11
17-12
17-13
17-13
17-14
17-15
17-16
17-17
17-18
17-18
17-19
17-20
17-22
17-22
17-22
17-23
17-23
17-24
17-24
17-24

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

18

18.1
18.1.1
18.2

19

19.1
19.2
19.3
19.3.1
19.3.2
19.3.3
19.4
19.4.1
19.4.2
19.5
19.6
19.7

20

20.1
20.1.1
20.1.2
20.2

20.3
21

21.1
21.2
21.3
21.4
21.5

22

22.1
22.2
22.2.1
22.2.2
22.2.3
22.3

CONTENTS (Cont.)

END

COMMENT

EXIT

EVAL
EXAMPLES
PROGRAM EXECUTION AND MEMORY ALLOCATION
COMMAND SUMMARY
SINGLE-CHARACTER COMMAND OUTPUT FORMAT
SUMMARY

MAGTAPE/CASSETTE PERIPHERAL INTERCHANGE
PROGRAM (MCPIP)

CALLING AND USING MCPIP
MCPIP Options
MCPIP ERROR MESSAGES

OCTAL DEBUGGING TECHNIQUE (ODT)

FEATURES
CALLING AND USING ODT
COMMANDS
Special Characters
Illegal Characters
Control Commands
ADDITIONAI TECHNIQUES
Current Location
Indirect References
ERRORS
PROGRAMMING NOTES SUMMARY
SUMMARY OF ODT COMMANDS

PERIPHERAL INTERCHANGE PROGRAM (PIP)

CALLING AND USING PIP

PIP Options

Examples of PIP Specification Commands
ADDITIONAL INFORMATION WORDS IN FILE
DIRECTORIES
PIP ERROR MESSAGES

PIP10

CALLING AND USING PIP10

HOW TO COPY LARGE FILES WITH PIP10 (SR)
PIP10 OPTIONS

PIP10 EXAMPLES

ERROR MESSAGES

RESOURCES (RESORC)

CALLING AND USING RESORC
RESORC OPTIONS
Fast Mode (/F Option)
Limited Mode (/L Option)
Extended Mode (/E Option)
RESORC ERROR MESSAGES

ix

Page

17-24
17-25
17-25
17-25
17-26
17-33
17-34

17-35

18-1

18-1
18-2
18-4

19-1

19-1
19-1
19-2
19-2
19-4
19-4
19-4
19-7
19-7
19-7
19-7
19-8

20-1

20-1
20-1
20-6

20-8
20-8

21-1

21-1
21-2
21-2
21-3
21-3

22-1

22-1
22-2
22-2
22-2
22-3
22-6

CHAPTER

CHAPTER

CHAPTER

23

23.1
23.2
23.2.1
23.2.2
23.3
23.4
23.5
23.6
23.7
23.7.1
23.7.2
23.7.3
23.7.4

24
25

25.1
25.1.1
25.1.2
25.1.3
25.1.4
25.1.5
25.1.6
25.1.7
25.1.8
25.1.9
25.1.10
25.1.11
25.1.12
25.1.13
25.1.14
25.2
25.2.1
25.3
25.3.1
25.3.2
25.4
25.4.1
25.4.2
25.4.3
25.5
25.5.1
25.5.2
25.5.3
25.5.4
25.5.5
25.6
25.6.1
25.6.2
25.6.3
25.6.4
25.6.5
25.6.6

CONTENTS (Cont.)

RKLFMT DISK FORMATTER PROGRAM

RUNNING THE PROGRAM
STANDARD TEST PROCEDURES

RK05J Drive Cartridge Mounting Procedure
RKOSF Drive Setup Procedure

FORMAT PROGRAM
ERRORS
PROGRAM DESCRIPTION
CONTROL CHARACTERS
MISCELLANEOUS
Waiting Message
End of Pass
Errors
Location Changes

RXCOPY PROGRAM
SET PROGRAM

TERMINAL ATTRIBUTES
Arrow
CODE n
COLumn n
ECHO
ESCape
FILL
FLAG
HEIGHT m
LC
PAGE
PAUSE n
SCOPE
TAB
WIDTH n
CARD READER ATTRIBUTES
CODE n
MAGNETIC TAPE ATTRIBUTES
PARITY x
FILES
SYSTEM ATTRIBUTES
INITIAL XXXXX
0S8
0578
LINE PRINTER ATTRIBUTES
LA78
LAS8SA
LC
LVSE
WIDTH n
ANY DEVICE ATTRIBUTES
FILES
DVCode nn

LOCation n=m or LOCation n

READOnly
VERSION x

BLOCK b, LOCation n=m or BLOCK b, LOC n

Page
23-1

23-1
23-2
23-2
23-2
23-3
23-4
23-4
23-5
23-5
23-5
23-6
23-6
23-6

24-1
25-1

25-3
25-3
25-3
25-4
25-4
25-4
25-5
25-5
25-5
25-6
25-6
25-6
25-7
25-7
25-7
25-8
25-8
25-8
25-8
25-8
25-9
25-9
25-9
25-9
25-10
25-10
25-10
25-10
25-10
25-11
25-11
25-11
25-12
25-12
25-13
25-13
25-13

CHAPTER

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

FIGURE

TABLE

26

26.1
26.2
26.3
26.4

o

=

HoEEEEmEEE s

HEHEWOONOU D& WN

= o

o]

CONTENTS (Cont.)

SRCCOM

SRCCOM ASSEMBLY INSTRUCTIONS
LOADING SRCCOM

SRCCOM OUTPUT

ERROR MESSAGES

CHARACTER CODES
LOADING PROCEDURES

INITIALIZING THE SYSTEM
LOADERS
Binary (BIN) Loader

0S/8 DEMONSTRATION RUN
05/8 FILE NAME EXTENSIONS
0S/8 DEVICE HANDLERS

HIGH-SPEED READER/PUNCH
LOW-SPEED READER/PUNCH
TTY HANDLERS

LINE PRINTERS

VR12 SCOPE

CARD READER

DECTAPES

MAGNETIC TAPE
CASSETTES

BATCH HANDLER

DSK AND SYS

OBTAINING 0S/8 PROGRAM VERSION NUMBERS

FIGURES

Sample BATCH Input File
Punched Card Input File
Loading the RIM Loader
Checking the RIM Loader
Loading the BIN Loader

Loading a Binary Tape Using BIN

TABLES

Permanent Device Names

0S/8 File Name Extensions
Keyboard Monitor Error Messages
Switch Options

Editor Key Control Commands

xi

w
|

]
BB WWWWNNRRRE M M H OHEE e

3 w} (@] www
[1 | [

mmmmmtlummmmm

Lo}
[}
=

TABLE

| N T T N Y O I T B B |
— O

|
I NOUNBWNHFFWNNFRFWORHERROONSOON &WN

-]
?
PNRORNFRNRERNDFENDFENEDEN

HHRWOWOWOWOWOWOWOOIANANATUN N UL E B bbb bbb
|

O |

CONTENT (Cont.)

TABLES (Cont.)

Editor Input Commands

Editor Listing Commands

Editor Output Commands

Editing Commands: Deletion and Alteration
Editor Search Commands

Editor Special Characters: Command Mode
Aborting Editor String Search Commands
Nonfatal Editor Error Messages

Editor Error Codes

Editor Command and Special Characters
Examples of Output to the Command Decoder
Examples of Input to the Command Decoder
Command Decoder Error Messages

Run-Time Options

BATCH Monitor Commands

BATCH Error Messages

Bitmap Options

BOOT Mnemonics

Standard DECtape System Device Handlers
Standard Cassette System Device Handlers
Standard Paper Tape System Device Handlers
0S/8 Device Handlers

BUILD Editing Characters

BUILD Error Messages

DCB Word

CAMP Error Messages

CREF Options

CREF Error Messages

DIRECT Options

DIRECT Error Messages

EPIC Commands

EPIC Error Messages

FOTP Options

FOTP Error Messages

MCPIP Options

MCPIP Error Messages

ODT Command Summary

PIP Options

PIP Error Messages

PIP10 Error Messages

RESORC Device Types

RESORC Error Messages

RXCOPY Options

RXCOPY Error Messages

SET Command Attributes

SET Error Messages

SRCCOM Run-Time Options

ASCII Character Set

RIM Loader for Low-Speed Reader

RIM Loader for High-Speed Reader

xii

Page

| T R N A T A I |
WWOWOIO0 O

1
NGB WWNDNNNNONWWRNRRERRREFOJOWON

o

HHHOWOOWOWOWOWOITAANAAANUNUNU & bbb b P
—=Ool U

LI]

N W

11-7
12-2
12-5
15-6
15-9
1l6-8
16-12
18-2
18-4
19-8
20-1
20-8
21-4
22-3
22-6
24-1
24-2

0Ss/8

0s/8

0S/8

05/8

0s/8

DOCUMENTATION SET FOR 0S/8

SYSTEM GENERATION NOTES (AA-H606A-TA)

The System Generation Notes provide the information you need
to get a new 0S5/8 system running.

SYSTEM REFERENCE MANUAL (AA-H607A-TA)

The System Reference Manual describes 0S/8 system
conventions, keyboard commands, and utility programs.

TECO REFERENCE MANUAL (AA-H608A-TA)

The TECO Reference Manual describes the 0S/8 version of this
character-oriented text editing and correcting program.

LANGUAGE REFERENCE MANUAL (AA-H609A-TA)
The Language Reference Manual describes all languages
supported by 0S/8, including BASIC, FORTRAN IV, and the PALS
assembly language.

ERROR MESSAGES (AA-H610A-TA)

This manual lists in alphabetical order all error messages
generated by 0S/8 system programs and languages.

xiii

CHAPTER 1

OVERVIEW

1.1 INTRODUCTION TO 0OS/8

This manual describes the 0S/8 keyboard commands, the 0S/8 Editor, and
the 0S/8 1library of utility programs. These commands and system
programs enable you to develop user-written programs in PAL8 assembly
language, BASIC, FORTRAN IV, and other languages available under 0S/8.

The 0S/8 library includes the following system programs.

BATCH
The BATCH monitor enables you to prepare a job on punched cards,
high-speed paper tape, or the system device and then leave it for
0s/8 to run.

BITMAP
The BITMAP program produces a table to show the locations that a
binary file occupies in memory.

BOOT
The BOOT program loads standard hardware bootstraps into memory.

BUILD
The BUILD program lets you alter the device configuration in your
system to insert new devices or add user-written handlers.

CAMP
The Cassette and Magnetic Tape Positioner program enables you to
manipulate cassettes and magnetic tapes.

CREF
The Cross Reference Program produces a table in assembly listings
that enables you to locate references to symbols and literals.
DIRECT

The DIRECT program produces various types of directories.

DTFRMT, DTCOPY,TDFRMT, TDCOPY
These programs format and copy DECtapes.

DUMP
The DUMP program sends listings to the LP08 line printer.

EPIC
The Edit, Punch, and Compare program reads and punches paper
tapes, edits files, and compares files in any format.

FOTP
The File-Oriented Transfer Program transfers groups of files
between file-structured devices.

OVERVIEW

FUTIL
The File Utility program enables you to examine and modify the
contents of mass storage devices.

MCPIP
The Magtape/Cassette Peripheral Interchange Program is a
file-transfer program for cassettes and magnetic tapes.

oDT
The Octal Debugging Technique enables you to run and debug a
program by typing instructions at the keyboard.
PIP
The Peripheral Interchange Program transfers files between
devices and provides file and directory maintenance functions.
PIP10
This is a file-transfer program that reads and writes ASCII
DECtape files using a TCO8 or TD8E DECtape controller.
RESORC
The RESORC program prints a listing of active device handlers.
RKLFMT
The RKLFMT program formats RKO5 disks.
RXCOPY
The RXCOPY program copies diskettes.
SET
The SET program makes it possible for you to modify the operating
characteristics of 0S/8.
SRCCOM

The Source Compare program compares two source files line by line
and prints the differences.

1.2 0S/8 1/0 DEVICES

0S/8 provides device independence. You can write programs without
concern for specific I/0 devices. In running a program, you can
select the most effective I1/0 devices available. Furthermore, if the
system configuration is altered, you need not rewrite programs to take
advantage of the new configuration.

The 0S/8 system controls the copying of data from any medium to any
other medium by means of subroutine calls to execute I/0 routines.
Logical names can be assigned to devices within the system to enable
symbolic referencing of devices.

Variable-length I/0 buffers can be specified by the user program.
Large buffers ensure efficient use of storage devices and a minimum of
time spent in data-transfer operations by minimizing disk and tape
motion. OS/8 takes full advantage of the RK8E disk pack for fast bulk
storage, yet full system services are possible with a single DECtape.

OVERVIEW

1.3 HARDWARE CONFIGURATIONS

The 0S/8 system can operate with the following devices as the system
device.

TC01/TC08 DECtape
LINCtape (PDP-12)
TD8E DECtape
DF32/RF08 disk
RK8E disk

RK8 disk

RX01 diskette

The term system device refers to the device on which the 05/8 system
resides and which it wutilizes for system functions. Thus, DECtape
unit 0 is the system device for a DECtape-based system. A nonsystem
device 1is any peripheral not specifically used for system functions,
such as LPT:, PTR:, DTA2:, etc.

TD8E DECtape can be used either with 12K words of core memory or with
8K words of core memory and 256 words of Read-Only-Memory (ROM).

If DF32 is the system device, at least 64K (2 platters) must be
available.

The minimum OS/8 configuration is a PDP-8 series computer with 8K
words of memory, one DECtape used as the system device, and a console
terminal. A multiple DECtape system performs appreciably faster than
a single DECtape system. The multiple DECtape system reduces DECtape
motion since it is possible to copy directly (without intermediate
searching) from the system DECtape to another DECtape (or vice versa)
when editing or assembling.

A typical medium-sized system might contain a PDP-8/E with at least 8K
words of core memory, TD8E DECtape and control, and an RK8E disk pack
and control. A disk system offers the additional convenience of easy
and fast access to files and large amounts of storage.

Up to 15 of the following devices can be included in a single 0S/8
system:

e As many as 8 DECtape units (TC01/TUS5S5, TC08/TU56, or
TD8E/TU56)

® TAB8E/TU60 cassette units

e TMBE/TUl0 magnetic tape units

® High-speed paper tape reader/punch
e Up to four RK8E disks

® Up to four RK8 disks

e Up to four RS08 disks

OVERVIEW

® Up to four DF32 disks

® Card reader (optical mark or punched cards)
e Line printer

e PDP-12 LINCtape

e PDP-12 scope

® Any other device for which it is possible to write a device
handler in one or two pages of core

1.4 SYSTEM SOFTWARE COMPONENTS
The main software components of the 0S/8 system include

Keyboard Monitor

The Concise Command Language
Command Decoder

Library of system programs
Device handlers

User Service Routine (USR)

The Keyboard Monitor provides communication between you and the 0S/8
executive routines by accepting commands from the console terminal.
The commands enable you to create 1logical names for devices, run
system and user programs, and save programs.

The Concise Command Language (CCL) provides an extended set of Monitor
Commands.

The Command Decoder allows you to communicate with a system 1library
program by accepting a command string from the keyboard indicating
input/output files. Following your keyboard command to run a system
library program, the Command Decoder prints an asterisk and then
accepts the command line containing device and file specifications.

The library of system programs contains the programs mentioned in
Section 1.1 and any of the extension programs you choose.

Device handlers are subroutines designed to transfer data to and from
peripheral devices. 05/8 is able to interface with as many as 15
different peripherals at a time. During system generation, device
handlers become an integral part of the system; both system and user
programs have access to any available device. (The BUILD program
allows quick and easy alteration of any available device.)

The User Service Routine (USR) controls the directory operations for
the 0S/8 system. A program can use the USR by means of standard
subroutine calls such as those used to activate device handler
subroutines. Some of the functions performed by the USR are loading
device handlers, searching file directories, creating and closing
output files, calling the Command Decoder, and chaining of programs.
The details on the operation and use of the USR are contained in the
0S/8 Software Support Manual (DEC-S8-0SSMB-A-D). For normal 0S/8
usage, the USR function is unseen by the user and need be of no
concern.

OVERVIEW

When 0S/8 is operating, the Command Decoder, Keyboard Monitor, and USR
are swapped into core from the system device as required. When their
operation has been completed, the previous contents of core are
restored.

The memory-resident portion of 0S/8 is extremely small (256 words),
allowing for a maximum use of memory by user programs.

CHAPTER 2

SYSTEM CONVENTIONS

0S/8 observes the following conventions in the names of devices,
files, and units of storage.

2.1 PERMANENT DEVICE NAMES

During configuration, the 0S/8 BUILD program assigns permanent names
to the devices 1in a system. You can change these names by
reconfiguring the system, but you must keep in mind that some CCL
commands and system programs operate on the assumption that certain
names are present. The DIRECT command, for example, uses the name
TTY: as a default device for listings, and the CREF program assumes
LPT: as a default output device. Therefore, it is good practice to
keep the following names always present on the system.

SYS:
DSK:
TTY:
LPT:

Table 2-1 lists all the device names used by 0S/8.

Table 2-1
Permanent Device Names

Permanent Name I1/0 Device
SYS System device (disk if the system has a
large disk -- RK8 or RF08; otherwise DTAOQ)
DTAn DECtape n, where n is an integer in the

range 0 to 7, inclusive

LTAn When using BUILD, LINCtapes may be calleé
LTA rather than DTA. n is an integer in
the range 0 to 7 inclusive.

DSK Default storage device for all files. The
assignment of DSK is specified at system
generation time. Usually DSK is the disk
on a single disk system or DTA0 on a
DECtape system.

(continued on next page)

SYSTEM CONVENTIONS

Table 2-1 (Cont.)
Permanent Device Names

Permanent Name I/0 Device
TTY Terminal keyboard and printer
PTP Paper tape punch
PTR Paper tape reader (Before accepting input,

the system prints an up-arrow (t), to which
the user replies by typing any key.)

CDR Card reader

LPT Line printer (Performs a form feed before
it begins printing output from a new
program.)

CSAn Cassette drive n, where n is an integer in

the range 0 to 7, inclusive

MTAn Magnetic tape drive n, where n 1is an
integer in the range 0 to 7 inclusive

DF DF32 disk

RF RF08 disk

RKAR RKOl or RKO5 disk unit n, where n 1is an
integer in the range 0 to 3

TV VR12 scope (PDP-12 only)

BAT Pseudo device which reads from BATCH input

stream (see BATCH section in Chapter 2)

RXAn Diskette n (floppy), where n is an integer
in the range of 0-7 inclusive

RKBn DECpack n, where n is an integer in the
range 0-1

NULL Device which on input returns an immediate
end-of-file and on output ignores
characters.

DUMP Prints contents of device blocks on LPT.

2.2 FILE NAMES AND EXTENSIONS

File names may contain up to six alphanumeric characters, followed
optionally by a period and an extension of two alphanumeric
characters. The extension usually identifies the file by type. For
example, a .PA extension after a file name indicates that the file
contains a PAL8 source program.

SYSTEM CONVENTIONS

In most cases, you will want to conform to the standard extensions
established for 0S5/8. If you omit the extension on an output file
specification, some system programs append assumed extensions. PALS,
for example, will add .PA to an output file. If you specify a file
for input and omit the extension, some system programs will look for a
file with an assumed extension. For example, if you specify a program
called PUMP as input to PAL8, PAL8 looks for PUMP.PA. If it fails to
find it, it looks for the file name and no extension.- Table 2-2 lists
the file name extensions used by 0S/8.

Table 2-2
0S/8 File Name Extensions

.BA BASIC source file (default extension for a
BASIC input file)

.BI Batch input file

.BK Backup ASCII file (default extension for a
TECO output file)

.BN Absolute binary file (default extension for
ABSLDR, BUILD, and BITMAP input files;
also used as default extension for PALS
binary output file)

.DA Data file

.DC Documentation file

.DI Directory listing

.FT FORTRAN language source file (default
extension for FORT input files)

.HL Help file (default extension for HELP input
files)

.LD F4 load mode (default assumed by run-time
system, F4 loader)

.LS Assembly 1listing output file (default
extension for PAL8 and SABR)

.MA Macro source file

.MP File containing a loading map (used by the

Linking Loader)

.PA PAL8 source file

.RA RALF assembly language file

.RB Relocatable binary source file

.RL Relocatable binary file (default extension

for a Linking Loader input file; also used
as the default extension for an 8K SABR
output file)

(continued on next page)

2-3

SYSTEM CONVENTIONS

Table 2-2 (Cont.)
0S/8 File Name Extensions

.SB

.SV

.SY

.TE

.TM

.TX

8K SABR source file

Core image file or SAVE file; appended to
a file name by the R, RUN, SAVE, and GET

Keyboard Monitor commands

System head

TECO macro file (default
MUNG input file)

extension for a

Temporary file generated by FORTRAN or SABR
for system use (default extension for CREF
input files and PAL8 output files)

Text files

2.3 UNITS OF STORAGE

0Ss/8
units
lengt

A wor

uses the terms "word", "page", "record", and

"block™ to describe

of storage. 1In directory listings, for example, 0S/8 lists file
hs in blocks or records. The terms are defined thus:

1 block=1 record=2 pages=256 (decimal) words

d consists of 12 bits.

CHAPTER 3

0S/8 KEYBOARD COMMANDS

3.1 INTRODUCTION

The 0s/8 Monitor and the Concise Command Language
program -- CCL.SV -- provide you with more than fifty different
keyboard commands.

® The Monitor provides the following commands, which you may
abbreviate to the first two letters.

ASSIGN
DEASSIGN
GET

SAVE

oDT

RUN

R

START
DATE

The Monitor displays a dot to indicate that it is ready to
accept a command.

To execute a command that you have typed, press RETURN or
ALTMODE.

Any error that you make in the use of these commands causes
the Monitor to print an error message, display the dot, and
wait for you to try again. For a description of these error
messages, see Table 3-1.

Table 3-1
Keyboard Monitor Error Messages

Message Meaning
BAD ARGS The arguments to the SAVE command are
not consistent and violate

restrictions listed in 1, 2, 3 under
SAVE command.

BAD CORE IMAGE The file requested was not a
core-image file (it could have been an
ASCII or binary file).

(continued on next page)

0S/8 KEYBOARD COMMANDS

Table 3-1 (Cont.)

Keyboard Monitor Error Messages

Message

Meaning

BAD DATE

ILLEGAL ARG.
MONITOR ERROR 2 AT xXxxX

{DIRECTORY I/0 ERROR)

MONITOR ERROR 5 AT xxxX
(I/0 ERROR ON SYS)

MONITOR ERROR 6 AT xxxx
(DIRECTORY OVERFLOW)

name NOT AVAILABLE

name NOT FOUND

NO!!

NO CCL!

SAVE ERROR

The date has not been entered
correctly (using slashes), or
incorrect arguments were used, or the
date was out of range.

The SAVE command was not expressed
correctly; 1illegal syntax used.

Attempt made to output to a WRITE-
LOCKed device, usually DECtape; or an
error has occurred reading/writing a
directory.

An error occurred while doing I/0 to
the system device. This error |is
normally the result of not
WRITE-ENABLing the system device.

A directory overflow has occurred
(no room for tentative file entry in
directory).

The device with the name given is not
listed in any system table, or it is
not available for use at the moment
(check the device in gquestion), or the
user tried to obtain input from an
output-only device (such as the
high-speed paper tape punch).

The file with the name given was not
found on the device indicated, or the
user tried to input from an
output-only device.

The user attempted to start (with .ST)
a program that cannot be started. The
user must not restart any user program
or system library program that
modified itself while in core (bit 2
of the Job Status Word is set; see
the GET command for details).

The command was not a legal keyboard
monitor command. It was, however, a
valid CCL command; but the file
CCL.SV was not found, or an I/0 error
occurred while trying to read the
file.

An I1/0 error has occurred while saving
the program. The program remains
intact in core.

(continued on next page)

0S/8 KEYBOARD COMMANDS

Table 3-1 (Cont.)
Keyboard Monitor Error Messages

Message Meaning

SYSTEM ERR An error occurred while doing I/0 to
the system device. The system should
be restarted at 7600 or 7605. Do not
press CONTinue, as this 1is sure to
cause futher errors.

TOO FEW ARGS An important argument has been omitted
from a command. For example,

2RUN IISK

would generate this message, as the
program to be run has not been entered
in the command.

USER ERROR 0 AT xxxx An input error was detected while
loading the program. xxxx refers to
the Monitor location where the error
was generated.

abcd? Where abcd is not a 1legal command;
for example, if the user typed:

SHELLO
the system would echo:

HELLO?

e The Concise Command Language program (CCL) provides an
extended set of Monitor commands. Some of these commands
allow you to call a system program indirectly, perform an
operation, and return automatically to the Monitor. This
method is simpler to use than the standard calling seguence
for a program. For example, the following two-line sequence
causes PAL8 to assemble a source program called SCOOP.PA and
send a binary and listing file to DSK, the default device.

sR FALS
XSCOOF . BN» SCOOF . LS<SCO0F . FA

You can obtain the same results faster by using the CCL PAL
command with the -LS option.

+FAL SCOOF.FA-LS

Other CCL commands perform special functions not available
through 0S/8 utility programs.

You can write your own CCL commands and add them to the CCL
program. For instructions, see the 0S/8 Software Support
Manual.

3-3

0S/8 KEYBOARD COMMANDS

You enter a CCL command the same way you enter a Keyboard
Monitor Command -- in response to the terminal dot. Normally,
you terminate the command line with the RETURN key. Depending

characteristics of the command you are using, control

completed or
To remain under
return to you,

on the
may return to the Monitor when the operation is
may remain within another 0S/8 program.
program control when control would normally

terminate the CCL command with an ALTMODE. (Note that this
termination procedure is the opposite of the way most 05/8
programs work.)

A special CCL command -- called CCL -- deactivates the entire

Concise Command Language Program and all the commands that run
under it. To reactivate the program, you must run it with the
R command.

CCL provides the following commands, which you may abbreviate
to the letters printed as capitals:

BACkspace

DUplicate PRInt uc
BAsic EDIT PUnch UNLoad
BOot DOF REName VERsion
CCL EXEcute RES ZERO
COMPare HELp REWind
COMpile LIst SET
Cory LOad SKIP
CREate MAKe SQuish
CREF MAP SUbmit
DAte MEMory TEco
DEassign MUNG TYpe
DELete ODT UA
DIRect PAL UB

3.2 COMMAND FORMAT

The general format of the command line is

command output:file<input:file/option
where
command is a legal 0S/8 command
output: is the name of the device you specify to receive output
file is the name and extension of an output file
input: is the name of the device you specify for input
file is the name and extension of an input file
/option is a command qualifier
Some commands permit multiple file and device specifications; refer
to the descriptions of the commands you want to use for details.
3.3 COMMAND AND FILE OPTIONS
0S/8 command options let you choose the way you want to execute a

command.
device.

File options 1let you optimize the storage on an output

0S/8 KEYBOARD COMMANDS

3.3.1 Command Options

0S/8 recognizes single letters, letter strings, and numbers as symbols
for command options. All options are defined in this manual along
with the commands they modify.

3.3.1.1 The Slash Construction -- Single-Letter Options -
Single-letter options follow a slash (/) and may appear anywhere in
the command line even in the middle of a filename. For example, this
line

+COPY RXA1:SECOND.EX<RXAOIFIRST.EX/T

and this line

+COPY RXA1:SECOND.EX/T<RXA0:FIRST.EX

both specify the /T option, which causes the system to assign the
current date to the output file.

3.3.1.2 The Parenthesis Construction -- Multiple-Letter Options - If
yol use two or more letter options in a command line, you may group
them together as a string within parentheses. This construction may
appear anywhere in the line. For example, this command

+COPY RXA1:0UTPUT.EX<SYS!{INPUT.EX(QT)
is the same as typing

+COPY RXA1:0UTPUT.EX<SYS!INPUT.EX/Q/T

3.3.1.3 The Equal Sign Construction -- Octal Number Options - An
octal number option, preceded by an equal sign, may occur only once in
a command line. If you place it in the middle of the line, you must
follow it with a separator character (a comma or left-angle bracket)
or another option and a separator character. For example, this 1line,
which includes an octal 3,

+DIRECT 8YS!=3

causes DIRECT to list the directory of SYS: on the terminal in three
columns.

3.3.2 File Options

A file option places an upper limit on the number of blocks an output
file may use. (One block contains 256 words.) This option allows the
system to optimize file storage. For example, this command line

+PAL BINARYL191,yLISTL200]1<SOURCE.PA

calls for two output files, BINARY and LIST, which may have a maximum
length of 19 blocks and 200 blocks respectively.

0S/8 KEYBOARD COMMANDS

3.3.3 Additional Switch Options--the bash Construction

A special set of command options enable you to send output to the
lineprinter or terminal, generate a listing file or a memory map, or
call for a particular compiler or assembler. These options are
described in Table 3-2.

Table 3-2
Switch Options

Option Meaning
-L Send output to LPT.
-LS Generate a 1listing file (used with the COMPILE,

EXECUTE, and PAL commands). The 1listing file is
written onto SYS: if no output device is specified
and is given a .LS extension. The listing filename
is the same as the filename that immediately preceded
the CCL -LS option.

-MP Generate a memory map (used with the COMPILE,
EXECUTE, and PAL commands).

-NB Do not create a binary file (used with the COMPILE,
EXECUTE, and PAL commands) .

-T Send output to terminal.

-PA Selects the PAL8 compiler when the files extension

does not determine it (used with the COMPILE and
EXECUTE commands).

-FT Selects the FORTRAN IV compiler when the file
extension does not determine it (used with the
COMPILE and EXECUTE commands).

3.4 COMMANDS THAT REMEMBER FILE SPECIFICATIONS

If you omit the device and file specifications in a CREATE, EDIT, PAL,
COMPILE, LOAD, or EXECUTE command, OS/8 assigns it the last argument
to appear in any command in the group. For example, these two
commands

+COMPILE TEST.FA
SEXECUTE

instruct the system to compile TEST.PA, then 1load and execute it.
When you enter the COMPILE command, the system stores the argument in
a temporary file for later reference by the EXECUTE command. This
feature works only with commands that you enter on the same day.

0S/8 KEYBOARD COMMANDS

3.5 USING WILDCARDS

Wildcards, which certain 0S/8 commands accept, make it possible for
you to refer to a group of related files with a single file
specification. 0S/8 provides two wildcards:

® the asterisk (*), which replaces an entire filename or
extension

e the gquestion mark (?), which replaces any single character

3.5.1 Wildcards in Input Filenames

The following commands permit both the asterisk and guestion mark as
wildcards in input specifications.

COPY
DELETE
DIRECT
LIST
RENAME
TYPE

Here are some examples of the various ways you can abbreviate input
specifications with wildcards.

.DEL TEST1.X% deletes all files on DSK with the name TEST1
- and any extension

+IHIR X.BN displays a directory of all files on DSK with
- a .BN extension and any name

IR TES??.% displays a directory of all files with names
- beginning TES and any extension

LIST ?77.77 lists the contents of all DSK files with
- names of three characters or less

A filename may not contain embedded asterisks. For example, TE*T.* is
an illegal specification and will produce the following error message:

ILLEGAL X

If you use a wildcard in a command other than the ones 1listed above,
0S/8 prints the error message

ILLEGAL X OR 7

3.5.2 Wildcards in Output Specifications

You may use the asterisk wildcard in an output file name. The
question mark, however, is illegal. If you omit the output file name
altogether, the system assumes *.* -- that is, all files with any
extension.

For example, this command

LCOFY RXA131X.BR<SYSIX.FA

copies all files from SYS with a PA extension to RXAl, adding the
extension BK.

0S/8 KEYBOARD COMMANDS

3.5.3 Warnings and Suggestions

Use wildcards in COPY and DELETE commands with extreme caution to
avoid destroying irreplacable files. Always observe the following
fail-safe measures.

® Keep a backup copy of the system diskette and all other
important files.

® Use the Q option with COPY and DELETE. The system pauses to
make sure you have specified the file you intended. If you
wish to go through with the operation, type Y in response to
the query. If not, type any other character.

For further discussion of wildcards, see the File-Oriented Transfer
Program (FOTP).

3.6 INDIRECT COMMANDS

You may occasionally wish to refer to the same group of files in

several commands. To avoid typing the same filenames and extensions

in each command line, use the indirect -- @ file -- feature.

An indirect file specification has the following format.
@device:file.ex

where

file.ex is a file containing the file specifications you want
to include in the command

To use the @ construction, you must first create a file containing the
list of file names you wish to include in the command line. For
example, assume you have created a file called FLIST.CM that contains
the string

FILEB,FILEC/L,FILED
To include these names in a COMPILE command, type

+COMPILE FILEAs@CFLISTSFILEZ

The system ignores carriage returns and 1line feeds -- but not
nulls -- within the command line. A null signifies end-of-line.

Command files may not exceed one block in length. If a command 1line
contains more than 512 characters, the system prints the following
message:

COMMAND LINE OVERFLOW

The following commands will not accept indirect files.

ASSIGN
DEASSIGN
GET
START

R

RUN

SAVE

oDT

DATE

3-8

0S/8 KEYBOARD COMMANDS

3.7 USING DEFAULTS

A default device, file name, or extension is the name the system
assumes if you omit the specification in a command line. You can
often reduce the amount of typing necessary to enter a command by
taking advantage of the following system defaults.

® DSK is the default device for input and output devices in most
commands. This means that you can omit the device whenever
you refer to a file on DSK. For example, the following
command makes a copy of a file called HUMPTY on DSK and calls
it DUMPTY.

+COFY DUMPTY<HUMPTY
® Any device -- stated or assumed -- in an input specification
becomes the default device for any additional input files in
the command line. For example, this command lists three files
on RXAl.

+LIST RXA1:0ONE»TWOsTHREE
® Some commands assume special default devices. DIRECT and
TYPE, for example, default to the terminal for output. The
following command will display the directory of DSK on the
terminal.
+DIR

The description of the 0S/8 command includes information about the
defaults that each command accepts.

3.8 GETTING BELP--THE HELP COMMAND

To obtain additional information about the use and format of 0S/8
commands, use the HELP command. The format is

.HELP command
where
command is the name of any 0S/8 command

HELP retrieves and displays a file called HELP.HL, which contains the
information you request.

To obtain a hard copy of the information from the 1line printer, use
the -L option.

LHELF PAL-L

0S/8 KEYBOARD COMMANDS

3.9 ENTERING A COMMAND LINE--CORRECTING AND PREVENTING ERRORS

The RETURN key enters a command line and causes the system to take the
action you have called for. Therefore, before you press RETURN, check
the line carefully for errors.

To correct single-character typing errors, use the DELETE key.
This key erases the last character you have typed. Successive
DELETEs will erase characters back to the beginning of the
line,

To remove an entire line, type CTRL/U by holding down the CTRL
key and striking U. The monitor will echo the command and
display a dot to indicate that it is ready to accept another
command.

To verify the contents of the line you are typing, strike the
LINE FEED key. The system will display whatever characters it
has received so far. Use the LINE FEED key to check a line in
which you have made numerous corrections.

If you enter a command line that you have typed incorrectly, one of
the following will result:

The system will fail to recognize or accept the command. In
this case, it will display a question mark and a dot and wait
for you to try again.

The Monitor will accept the command and attempt to execute it.
If you notice your error at this point, type CTRL/C
immediately (simultaneously pressing CTRL and C). Depending
on the type of command and the files involved, this may halt
execution.

0S/8 KEYBOARD COMMANDS ASSIGN

3.10 ASSIGN
The ASSIGN command assigns a logical name -- that is, a name that you
create —- to one of the available permanent devices. The format of
the command is

ASSIGN perm user
where

perm is the permanent name of the device

user is the one-to-four-character name you want to assign

Note that a device name does not reguire a colon when it follows the
ASSIGN command.

The following rules apply to the assignment and use of logical names.
e You may assign only one logical name to a device at a time.
® Once you have assigned a name to a device, you may refer to it
by either its logical or permanent name. ASSIGN makes the two
names equivalent.
For example, this command

+ASSIGN RXA1l DEV2

assigns the logical name DEV2 to RXAl. You may now refer to the
device by either name in any command line.

3.10.1 Canceling a Logical Name

To cancel a logical name, type the ASSIGN command with the permanent
device name only. For example, to remove DEV2 as a logical name for
RXAl, enter

LASSIGN RXA1

3.10.2 Checking for Duplicate Names

To determine if a logical name is unique in the 0S/8 system, enter the
name by itself in an ASSIGN command line. For example, to see if DEV2
already exists, type

+ASSIGN DEV2

If the name does not appear in any of the system tables, ASSIGN
displays the message

NEV2 NOT AVAILABLE

All 1- and 2-character names are unique in 0S/8. You need test only
3- and 4-character names.

ASSIGN is a Monitor command.

3-11

BACKSPACE 0S/8 KEYBOARD COMMANDS

3.11 BACKSPACE

The BACKSPACE command runs the 0S/8 CAMP program and spaces a magnetic
tape or cassette backward a specified number of files or records.
BACKSPACE is equivalent to the CAMP BACKSPACE command. When CAMP has
completed a BACKSPACE operation, it returns control to the Monitor.
The format is

BACKSPACE dev:nnnn X

where
dev: is the permanent name of a cassette or magnetic tape
drive
nnnn is an unsigned decimal number representing the number
of records or files you wish to backspace. If you omit
the number, BACKSPACE assumes nnnn=1.
X is an R or F to indicate records or files. If you do

not specify records or files, BACKSPACE assumes F.
For example, this command
+BACKSPACE CSA0:2 F
positions the cassette mounted on CASO backward two files.

For complete information on the BACKSPACE command, see the chapter on
the CAMP program.

BACKSPACE is a CCL command and runs the CAMP program.

3-12

0S/8 KEYBOARD COMMANDS BASIC

3.12 BASIC
The BASIC command invokes the BASIC Editor. The format is
BASIC

As soon as it is ready to accept your first instruction, BASIC prints
the query

NEW OR OLD --

to determine if you want to create a new file or work on an old one.

For example, this command

JBASIC
NEW OR OLD -- NEW STUFF.BA

tells the BASIC Editor to accept a new program called STUFF.BA

For complete information on 0S/8 BASIC, see the 0S/8 Language
Reference Manual.

3-13

BOOT 0S/8 KEYBOARD COMMANDS

3.13 BOOT

The BOOT command makes it possible for you to bootstrap onto another
device or onto another PDP/8 system. The format is

BOOT/dv
where
dv is a mnemonic listed in the BOOT chapter in this manual

If you type BOOT with no argument, BOOT prints a slash to indicate
that you must enter a mnemonic.

For example, this command
+BOOT/RF
bootstraps onto the RF08 disk.

If you wish to halt before doing the bootstrap, type the command, a
mnemonic, and a period. For example:

LROOT/CA.

The period causes the computer to halt, giving you time to mount a new
device. To continue the operation, press the CONTINUE switch on the
console. This form of the command is useful when only one disk or
DECtape drive exists on the system.

For complete information, see the BOOT chapter in this manual.

3-14

0S/8 KEYBOARD COMMANDS CCL

3.14 CCL

The CCL command disables the Concise Command Language program on the
system device. The format is

CCL
The command accepts no arguments.
The CCL command totally deactivates the CCL feature of 0S/8 so that

the system will not accept any CCL command. If you wish to use CCL
again, you must reactivate it with the R command. To do this, type

+R CCL

COMPARE 0S/8 KEYBOARD COMMANDS

3.15 COMPARE

The COMPARE command makes a line-by-line comparison of two input
source files and sends the results to an output device. 1In most
COMPARE operations, the two source files are different versions of the
same program. COMPARE prints the editing changes, making it a useful
tool for debugging.

The format is

COMPARE output:file<input:filel,input:file2

where
output:file is the file containing the results of the
comparison and the device you want to send it to
input:filel is the first input source file for comparison
input:file2 is the second source file

COMPARE makes the following assumptions:
e If you omit an input or output device, COMPARE assumes DSK
e If you omit the output specification altogether, COMPARE
assumes TTY. (In most cases you will want to see the results
on the terminal.)
For example, this command

+COMFARE RXA1:AFFLE.FTyRXA1!ORANGE.FT

compares two FORTRAN source files on RXAl -- APPLE and ORANGE -- and
sends the results to the terminal.

3.15.1 COMPARE Output
COMPARE produces the following output sequence:
1. the current version number of the utility program SRCCOM
2. the header line of both input files (the header is the first
line of the file and usually contains the file name and
creation date)

3. a difference group (see below)

4. additional difference groups, if any, until it reaches the
end of the shorter file

COMPARE reads two input files one line at a time until it encounters
three consecutive matching lines. Then it outputs all lines from both
files up to and including the first matching 1line. This output is
called a difference group. For a complete description of difference
groups, see the SRCCOM chapter in this manual.

3-16

0S/8 KEYBOARD COMMANDS

For example, consider two files on DSK--NITTY and GRITTY.

NITTY GRITTY
B X

C C

D D

E E

F G

G H

H J

I

J

To compare these two files and have the results displayed on the
terminal, type

+COMPARE NITTYsGRITTY

COMPARE prints the current version number of SRCCOM, the utility
program that does the comparison,

SRCCOM V4A

the header lines

DNITTY
2)GRITTY

and the results of the comparison in two difference groups

1)002 B
1) C
L3333

2)002 X
2) C
xRk Rk kKX
1)002 F
1) G
1) H
1) I
D J
XKkX

2)002 G
2) H
2) J

If COMPARE discovers two identical files, it prints

NO DIFFERENCES

in the output file.

3.15.2
COMPARE

COMPARE Options
provides the following options:

=k In normal operation, COMPARE outputs 1lines until it
encounters three consecutive matching lines. To change
the number of lines that interrupt processing, use the
=k option, where k is the number of lines (in octal)
that you want to specify.

3-17

e /C
e /B
e /S
e /T
e /X

0S/8 KEYBOARD COMMANDS

COMPARE ignores comment fields during the comparison of
assembly language source files.

COMPARE treats a blank line as valid input containing
blanks instead of a carriage return.

COMPARE ignores all tabs and spaces during the
comparison.

COMPARE converts all tabs from the input file to spaces
on the output device.

COMPARE ignores all comment fields during the
comparison and does not send comments to the output
device.

COMPARE is a CCL command and runs SRCCOM.

3-18

0S/8 KEYBOARD COMMANDS COMPILE

3.16 COMPILE
The COMPILE command

e assembles a PAL8 source program and outputs an absolute binary
file and a listing file or a CREF file

e compiles and assembles a FORTRAN IV source program and outputs
a relocatable binary file and a listing file .

e compiles, loads, and executes a BASIC source program
The format for a PAL8 program is

COM output:prog.BN,output:list.LS<input:filel.PA,...file9.PA

where
output:prog.BN is a PAL8 binary file
output:list.LS is a PAL8 listing file
input:filel,...file 9 is a single source program, which you

may enter in up to nine separate files
For example, this command line

+COMPILE RXA1!ACE.BNsRXA1!ACE.LS<RXA1!ACE.FA

assembles a PAL8 source program on RXAl called ACE.PA and produces a
binary file, ACE.BN, and a listing file, ACE.LS.

The format for a FORTRAN source program is

COMPILE output:prog.RL,output:list.LS<input:filel.FT,...file9.FT

where
output:prog.RL is an assembled FORTRAN program
output:1list.LS is a listing file
input:filel,...file 9 is a FORTRAN source program stored in up

to nine files
For example, this command

+COMFILE RXA2:DEUCE.RLyRXA2:DEUCE.LS<RXA1DEUCE.FT

assembles DEUCE.FT and outputs a binary and a listing file -- DEUCE.RL
and DEUCE.LS.

3.16.1 COMPILE Input

Enter your PAL8, FORTRAN, or BASIC program as an input file or files.
You may include up to nine input files in a single COMPILE command
line. COMPILE assumes that they all contain sections of the same
program.

The extension on the file name identifies the type of program the file
contains and tells the command which assembler or compiler to summon.

3-19

0S/8 KEYBOARD COMMANDS

e .PA identifies a PAL8 source program

e .FT identifies a FORTRAN source program

e .BA identifies a BASIC source program
1f you use nonstandard extensions, you must specify the assembler or
compiler your program requires with processor switch options -PA, -FT,
or -BA.

COMPILE makes the following assumptions about input device names:

e If you omit the device in the first input specification,
COMPILE assumes DSK.

e If you omit the device in subsequent input entries, COMPILE
assumes the last device you name.

For example, this command line
+COMPILE FART1.PAYPART2.FAyPART3.PA

assembles a 3-part PAL8 program on DSK.

3.16.2 COMPILE Output

COMPILE outputs binary and listing files, assigning the names you
specify.

3.16.2.1 Output File 1 -- the Binary Code

@ If your input file is a PAL8 source program, COMPILE assigns
the first output file name to the binary code generated by the
assembler, adding a .BN extension if you omit it.

e If your input file is a FORTRAN program, COMPILE assigns the
first output file name to the relocatable binary code produced

by the FORTRAN assembler, adding .RL if you omit the
extension,

If you omit the device, COMPILE assumes DSK. If you omit the file
name, COMPILE assumes the name of the first input file.

For example, this command line
+COMPILE RXA1:!SUNDAY-RXA2!MONDAY.FT

compiles and assembles the source program MONDAY.FT and sends it to
RXAl as a binary file called SUNDAY.RL.

In certain COMPILE operations, you may wish to suppress the output
binary file and generate only a listing file. To suppress a binary
file, use the -NB (no binary) switch. For example,

+COMFILE SAMFLE.FA-LS-NR

assembles SAMPLE.PA and produces only a listing file.

0S/8 KEYBOARD COMMANDS

3.16.2.2 Output File 2 -- the Listing File - You can request a

listing

file of a PAL8 or FORTRAN program in two ways:

Enter a second output file in the COMPILE line. COMPILE
generates the 1listing and assigns it the name you specify,
adding .LS if you omit the extension.

Type the -LS switch option after an input file name. COMPILE
generates the listing, gives it the name immediately preceding
the switch, and adds the .LS extension.

For example, this command

+COMFILE FARTYsPARTY FARTY.FA

and this command

+COMFILE FARTY.FA-LS

both generate a listing file PARTY.LS.

If you use the PAL8 /C option, the second output file is passed to the
CREF program, which produces a cross-reference listing.

3.16.2.3 COMPILE Options and Errors - For a complete description of

COMPILE

options and errors, see the sections on PAL8, FORTRAN IV, and

BASIC in the 0S/8 Language Reference Manual.

COMPILE

is a CCL command.

COPY 0S/8 KEYBOARD COMMANDS

3.17 COPY

The COPY command transfers files from one device to another. The
format is

COPY output:file<input:filel,...input:file5

COPY sends files to the output device in exactly the same format and
order in which they appear in the command. Since the operation makes
no changes at all in the files, you may transfer any kind of
file -- memory image, binary, source -- with the COPY command.

3.17.1 COPY Input

You enter the file or files you want to transfer as input in the
command line.

A complete COPY input specification includes a device, a file name,
and an extension. You may enter up to five input files in a command
line. COPY uses the following input defaults:

e If you omit the device name in the first input specification,
COPY assumes DSK.

e If you omit the device name in succeeding input
specifications, COPY assumes the last device entered.

You may use the wildcards * and ? to transfer an entire group of

related files with a single command. The specification *.* tells COPY
to transfer all the files on a device.

3.17.2 COPY Output

A complete output specification includes a device, a file name, and an
extension. You may enter only one output specification in a command
line. If you want your transferred file to have a different name from
the original, you must enter that name as the output file.

COPY uses the following output defaults:

e If you omit the device, COPY assumes DSK.

e If you omit the output file name, COPY assumes *.* —-- that is,
it assumes that the output file has the same name as the input
file.

You may use only the wildcard *; the question mark (?) 1is 1illegal.
Keep in mind that as output the specification *.* tells COPY to give
the output file the same name as the input file.

3.17.3 COPY Terminal Display

During execution, COPY prints on the terminal the names of the files
it has transferred. For example, the following command transfers
three files from DSK to RXAl.

COFY RXA1IFLOWER.FA-ROSE.FAsDAISY.FAsZINNIA.FA

-

0S/8 KEYBOARD COMMANDS

COPY displays

FILCS COFIED
ROLL L FA
DAIGY.FA
ZINNIA.FA

3.17.4 Predeletion and Postdeletion

Before COPY transfers a file to an output device, it checks the file
name against the output file directory. If it finds a file on the
device with the same name and extension as the file it is going to
transfer, COPY automatically deletes it before it does the transfer.
This operation -- called predeletion -- makes space for the new file
on the output device, which may not otherwise be able to hold another
file. However, it may also cause you to lose a valuable file if for
some reason the input fails. To help protect against such loss, COPY
provides a second method of transfer called postdeletion. In this
mode, COPY deletes any file with the same name as the input file only
after it has completed the transfer. To specify postdeletion, use the
/N option.

3.17.5 COPY Options

e /C COPY transfers all input files with the current date
onto the output device.

e /F A file will not fit on the output device. COPY prints

MOUNT NEW DEVICE

on the terminal. You remove the current device and
mount a new one on the same unit. To continue the
transfer, type any character. If possible, ZERO the
directory of the new device.

e /T As part of the transfer operation, COPY changes the
creation date on the output file to the current date.
Without /T, COPY transfers the original date.

e /U COPY transfers input files in the exact order that they
appear in the command line -- not the order in which
they occur on the device.

o /V COPY transfers all files on a device except the ones
you specify in the command line.

o /W COPY prints its current version number.

e /N COPY uses postdeletion.

e /O COPY transfers all files on a device except those with

the current date.

e /Q COPY pauses before a transfer to make sure you want to
go through with the operation. If you do, type ¥; if
not, type any other character.

COPY is a CCL command and runs FOTP. For complete information on file
transfer, see the FOTP chapter in this manual.

CREATE 0S/8 KEYBOARD COMMANDS

3.18 CREATE
The CREATE command summons the 0S/8 Editor to let you open and write a
new file. CREATE accepts no input specifications and only one file
name and device for output. The format is

CREATE output:file

where

output:file is the name of the file you want to create and the
device you want to store it on.

For example, this line
+CREATE BIRDY.FA
opens a file called BIRDY.PA on the default device, DSK.

After you press the RETURN key to execute the command, the 0S/8 Editor
displays a number sign (#) to indicate that it is ready to receive
your instructions and text. To CREATE a file with the 0S/8 Editor,
see Chapter 4 in this manual.

Each time you enter a CREATE command, the Monitor holds the argument
(the device and file name) in a temporary location. If you type an
EDIT command later without an argument, EDIT reads the file name in
this location. This convenient feature works only with files that you
CREATE and EDIT on the same day.

CREATE is a CCL command and runs EDIT.SV.

0S/8 KEYBOARD COMMANDS CREF

3.19 CREF

The CREF command assembles a PALS program and produces a
cross-reference listing, usually on the line printer.

The format is
CREF outdev:file.LS<indev:file.PA

CREF makes the following assumptions about output and input
specifications.

o If you omit the extension on the input file, CREF assumes PA.
e If you omit the extension on the output file, CREF adds LS.

e If you omit the output specifications altogether, CREF sends
the file to the line printer.

3.19.1 CREF Options

e /P CREF disables pass-one listing output until it
encounters a $ in the source program. Thus, if you use
the /P option, CREF prints a dollar sign and the symbol

table.

e /U CREF disables pass-one listing output and the symbol
table.

o /X CREF does not process literals. This option provides

space for CREF to operate on large programs with many
symbols and literals.

e /E CREF does not eliminate the intermediate CREFLS.TM file
that is output from assembly and used as input to CREF,

e /M CREF cross-references mammoth files in two major
passes. Pass one processes the symbols from A through
LGnnnn; pass two processes the symbols from LHnnnn
through Z and the literals.

CREF is a CCL command and runs PAL8.SV and CREF.SV.

DATE 0S/8 REYBOARD COMMANDS

3.20 DATE

The DATE command lets you set and inspect the current system date.
You should always set the date as soon as you bootstrap the system.

To set the date, type

DATE dd-mmm-yy

where
dd is a two-digit number representing the day of the month
mmm are the first three letters of the month
Yy are the last two digits of the year

For example:
SDATE 23-MAY-77

To inspect the current system date, type
+DATE

For example:
DA 1-JUN-77

S DA
LWEDNESDAY JUNE 15 1977

The system uses the current date in directories, newly created files,
and files transferred from one device to another. If you enter the
date after booting, the only valid directory entry dates are those for
the current year and seven years preceding it. The system will print
any earlier date incorrectly.

If you enter the date incorrectly, the Monitor prints an error
message.

AL _DATE

The DATE command runs program CCL.SV.

0S/8 KEYBOARD COMMANDS DEASSIGN

3.21 DEASSIGN

DEASSIGN invalidates all logical (user-defined) names that you have
given to permanent devices. (See the ASSIGN command.)

The format is
DEASSIGN

For example, the following pair of commands assign the logical name
DEV1 to SYS and then cancel it.

+ASSIGN SYS DEV1
L DEASSIGN

The Monitor performs the DEASSIGN function.

DELETE 0S/8 KEYBOARD COMMANDS

3.22 DELETE

The DELETE command removes files from the directory of the device you
specify. The format is '

DELETE input:filel,...file5

Enter the files -- up to five -- that you want to delete as input
files in the command line. You may specify only one device in a
command line. DELETE makes the following assumptions about input
specifications.

@ If you omit the device name in the first input specification,
DELETE assumes DSK.

e If you omit the device name 1in succeeding specifications,
DELETE assumes the last device you entered. For example, this
command

+DELETE RXA1:!EASTyWEST,NORTH»SOUTH
deletes four files from RXAl.

Note that DELETE does not actually remove the file from the device.
It simply erases its name from the directory, making the space it
occupies available for a new file. This means that in some cases you
may be able to retrieve a file you have mistakenly "deleted." For
details on retrieving lost files, see the PIP /I option in this
manual. Also see the SUPERTECO section in the 0S/8 TECO Reference

Manual.

You may use the wildcard asterisk (*) to specify file names and
extensions and the gquestion mark (?) to indicate single characters.
Wildcards enable you to remove an entire group of related files with a
single DELETE command. For example, this command

+DELETE X.PA

removes all files with a PA extension from the system device. Use
wildcards with extreme caution to avoid deleting irreplacable files.

3.22.1 The Conditional DELETE

In most DELETE operations you simply list the files you want to remove
from a device as input files. 1In some cases, however, you may wish to
remove a file only on the condition that some other related file
exists -- a source file, for example, if the device also contains the
program in binary code.

To call for this kind of DELETE, use the following format:

DELETE output:file<input:file

where
output:file is the file you wish to delete if file f |is
present
input:file is file £

0S/8 KEYBOARD COMMANDS

This command deletes, for example, any DSK file with a .PA extension,
only on the condition that DSK contains a file with the same name and
a .BN extension.

+DELETE X.PA<X.BN
FILES DELETED!:
TEST1.PA

TEST2.PA

Only the wildcard (*) is legal in an out specification. You may not
use the question mark.

3.22.2 DELETE Terminal Display

During execution, DELETE prints on the terminal the names of the files
it has removed. For example:

+DELETE" RXA2:SNOW.BAsRAIN.BA
FILES DELETEDS

SNOW. BA
RAIN.BA

3.22.3 DELETE Options

You may qualify a DELETE command with the following slash options:

e /C DELETE removes only those files that have the current
date.

e /O DELETE removes all files except those with the current
date.

e /V DELETE removes all the files from a device except the

ones you specify in the command line.

e /Q DELETE prints a question mark before execution to make
sure that you specified the right files for removal.
If your answer is yes, type ¥Y; if no, type any other
character.

e /N DELETE displays a log of all files it has found for
deletion but does not remove the file names from the
directory.

DELETE causes the execution of program CCL.SV and FOTP.SV with the /D
option. For further information on deleting files, see the FOTP
chapter in this manual.

DIRECT 0S/8 KEYBOARD COMMANDS

3.23 DIRECT

The DIRECT command produces listings of 0S/8 device directories. The
format is

DIRECT output:file<input:filel,...input:file5
DIRECT prints a directory of all the files on all the devices (up to
5) that you specify in the command line. DIRECT makes the following
assumptions about input and output specifications:

@ If you omit the input device, DIRECT assumes DSK.

e If you omit input file names, DIRECT assumes *.* -- that is,
all files with any extension.

e If you omit the output device, DIRECT prints the directory on
the terminal.

® DIRECT automatically adds a DI extension on an output file.
Always use wildcards in your input specifications when requesting a
list of related files on a device. For example, this command calls
for a list of all files on DSK that have a .PA or .BN extension.

LDIR *OPA,*QBN

You may use wildcards to represent an output file name or extension.

3.23.1 DIRECT Output

The standard DIRECT listing has the following format:

filespec nnn dd-mmm-yy
(file name and (number of blocks used (file-creation date)
extension) in decimal)

If you do not enter the current date with the DATE command when you
boot the system, vyour directory 1listings will not include a
file-creation date.

For examples of DIRECT output, see the DIRECT chapter.

3.23.2 DIRECT Options

DIRECT options enable you to produce the following special
directories.

® =n DIRECT lists a directory in n columns, where is a
number from 1 to 7.

e /C DIRECT lists only files with the current system date.

e /E DIRECT includes empty files in the listing.

e /F DIRECT lists only file names, omitting lengths and
dates.,

e /M DIRECT lists empty files only.

/0

/R

/U

/W

0S/8 KEYBOARD COMMANDS

DIRECT lists only files with a date other

current date.

DIRECT lists the file name you specify and
that follow it in the device directory.

DIRECT lists files in the same order that
them in the command line. That is, it
input file specification as a separate
request.

than the

all files

you enter
treats each
directory

DIRECT lists all files on a device except the ones you

specify in the command line.

DIRECT displays its current version number.

3-31

DUPLICATE 0S/8 KEYBOARD COMMANDS

3.24 DUPLICATE

The DUPLICATE command copies the entire contents of one diskette to
another diskette. The format is

DUPLICATE output diskette:<input diskette:
You may use DUPLICATE to transfer the contents of diskettes only. For
example, the following command transfers the contents of RXAO to RXAl,
the device specified for output.

+DUPLICATE RXA1:<RXAO03:
DUPLICATE is a CCL command and runs the RXCOPY program. For a

description of the options you can use with DUPLICATE, see the RXCOPY
chapter in this manual.

3-32

0S/8 KEYBOARD COMMANDS EDIT

3.25 EDIT

The EDIT command summons the 0S/8 Editor to let you retrieve and work
on a source program that you have stored as a file. The format is

EDIT output:file<input:filel,...input:file9

where
input:filel...9 is a program (stored in one to nine files)
you want to work on and the device on which
it is located
output:file is the name of the modified file and the

device you want to send it to

The Editor signals with a number sign (#) as soon as it 1is ready to
accept your first instruction. For a discussion of these
instructions, see Chapter 4.

3.25.1 Recalling Arguments

The EDIT command can recall arguments from a previous EDIT or CREATE
command entered on the same day. If you enter both an input and an
output file, EDIT remembers only the output specification.

EOF 0S/8 KEYBOARD COMMANDS

3.26 EOF
The EOF (End of File) command runs the CAMP program and writes a
single mark (file gap) on the specified magnetic tape or cassette.
The EQF command has the format

EOF device

where

device is either MTAn or CSAn, signifying the device on
which the file gap mark is to be written

For example, this command
LEOF MTA3
writes an end-of-file mark on the magnetic tape mounted on MTA3.

For a complete description of CAMP commands, see the CAMP chapter in
this manual.

3-34

0S/8 KEYBOARD COMMANDS EXECUTE

3.27 EXECUTE
The EXECUTE command

e assembles or compiles, links, loads, and executes a source
program

® links, loads, and runs an assembled or compiled program

e runs a linked and loaded program
The format is

EXECUTE output:file.bn,file.ls<input:filel,...file9
The EXECUTE command is the same as the COMPILE command with the /G
option. The input and output specifications depend on the compiler or
assembler you invoke. For complete information, see the COMPILE

command and the various language chapters in the 0S/8 Language
Reference Manual.

GET 0S/8 KEYBOARD COMMANDS

3.28 GET
The GET command loads a memory-image file -- that is, an SV file you
have created with the SAVE command -- back into memory. The format is

GET input:file.SV

If you omit the extension, GET looks for a file with the name you
specify and an .SV extension. You must specify the device; GET does
not assume DSK.

For example, to load into memory a file called JOBCNT.SV on RXAO0, type
+GET RXAO:JORCNT

During execution, GET loads the file and its Core Control Block into

memory, then transfers the CCB to a special area on the system device

for reference and maintenance. GET also places the Job Status Word

into 1location 7746 of field 0 to indicate what parts of memory the

file uses and how. It loads the block number of the first block of
the file into location 7747.

To run a program that you have loaded into memory with GET, use the
START or EXECUTE command.

The Monitor performs the GET operation.

3-36

0S/8 KEYBOARD COMMANDS HELP

3.29 HELP

The HELP command sends information on O0S/8 system programs to an
output device, usually the terminal. The format is

HELP output:£file<0S/8
where

0s/8 is the name of an 0S/8 keyboard command or system
program

The default output device for HELP is TTY, the terminal.
To see a complete listing of keyboard commands, type
+HELP

For information on a specific command, enter the command name as the
argument in a HELP line:

+HELP PAL
To obtain a listing of all legal arguments for HELP, type
+HELP HELF
HELP runs the program HELP.SV, which uses a reference file HELP.HL.

This file, which must be located on the system device, contains a list
of all the HELP subfiles available along with the HELP text itself.

LIST 0S/8 KEYBOARD COMMANDS

3.30 LIST
The LIST command sends to the line printer the contents of the files
(up to five) that you specify as input in the command line. The
format is

LIST input:filel,...input:file5

LIST requires no output specification, assuming LPT. If you omit the
input device, LIST looks for the file on DSK.

For example, this command prints the source program PROG.BA, located
on DSK, on the line printer.

LLIST PROG.BA

LIST outputs the contents of each input file in the same order that
you enter the files in the command line.

3.30.1 LIST Options

e /C LIST prints all files with the current date.

e /O LIST prints all files except those with the current
date.

o /V LIST prints all files except the ones you specify in

the command line.

e /Q LIST displays each file name and a question mark. If
you want to list that file, type Y; if not, type any
other character.

LIST runs CCL.SV and FOTP.SV.

0S/8 KEYBOARD COMMANDS LOAD

3.31 LOAD

The LOAD command lets you load a PAL8 absolute binary file or a
FORTRAN relocatable binary file into memory.

The extension on the input file determines which 1loader the command
summons.

® BN identifies a PAL8 program in absolute binary form and
causes LOAD to summon the ABSLDR.

e RL identifies a FORTRAN program in relocatable code and causes
LOAD to summon the FORTRAN loader.

To LOAD a PAL8 program, use the following format:
LOAD input:filel.BN,...input:£file9.BN
where

input:filel.BN,...9.BN is a PAL8 absolute binary file contained
in 1 to 9 files

If your input file is a PAL8 program, LOAD ignores output
specifications.

For example, this command
+LOAD RXA1:TIC.BNyTAC.BN>TOE.BN
places a 3-part program in memory.
To LOAD a FORTRAN program, use the following format:

LOAD output:image.LD,output:map.LS<input:filel.RL,...input:file9.RL

where
output:image.LD is an optional loader image file
output:map.LS is an optional loader symbol map
input:file.RL...9.RL is a FORTRAN program in relocatable

binary form stored in 1 to 9 files
Once you have placed the program in memory, you can
@ run it with the START command
® create an .SV file with the SAVE command
e debug the program with ODT

For a list of the options that LOAD accepts, see the chapters on the
PAL8 ABSLDR and the FORTRAN loader.

MAKE 0S/8 KEYBOARD COMMANDS

3.32 MAKE

The MAKE command runs TECO and opens the file you specify for output.
The format is

MAKE output:file

If you omit the device name and the file extension, MAKE assumes DSK
and .PA.

If the file you specify already exists, MAKE prints the message
ZSUPERSEDING

For example, this command
+MAKE DTA1!TEXT.TX

is the same as typing

+R TECO
XEWDTA1STEXT.TX$$

For further information, see the 0S/8 TECO Reference Manual.

3-40

0S/8 KEYBOARD COMMANDS MAP

3.33 MAP

The MAP command produces a map -- usually on the 1line printer -- of
all the memory locations used by the absolute binary files you specify
in the command line.

The format is
MAP output:file<input:filel,...input:file9

MAP accepts a minimum of nine files as input in a single command line.
To specify more than nine files, press the ESCAPE key after the ninth
entry. This causes the Command Decoder to print an asterisk (*),
indicating that you may continue to specify input files, terminating
each with the RETURN key. To execute this command, type another
ESCAPE.

If you omit the extension from an input file name, MAP assumes .BN.

If you omit the output device, MAP sends the map to the line printer.
To display a map on the terminal, use the /T option.

3.33.1 MAP Output
MAP depicts MEMORY as a series of 100-digit lines (in octal), grouped
in pairs. Each pair of lines represents one memory page; each digit
in a line represents one memory location. Depending on the contents
of a location, MAP prints the digit 0, 1, 2, or 3.

® 0 means the program did not load into this location.

e 1 means the location was loaded into once.

® 2 means the location was loaded into twice.

® 3 means the location was loaded into three times.
If you specify the terminal as the output device, MAP prints a set of
octal numbers across the top of the map. Each number -- ranging from
00 to 77 -- is the vertical co-ordinate for the column of digits below
it. To determine the memory address of any entry in the map, add the
line number at the left to the octal number directly above.

For examples of MAP output, see the BITMAP chapter in this manual.

3.33.2 MAP Options
You can modify MAP output with the following options:

® /n MAP confines the construction of maps to the field you
specify as n.

e /R MAP resets the map just constructed in memory to 1look
as though nothing has been read in. If you specify the
wrong file in a MAP command, use the /R option at the
end of the line.

0S/8 KEYBOARD COMMANDS

e /S MAP reads every absolute binary program in an input
file. In normal operation, MAP accepts only the first
file.

e /T MAP changes the format of the output map -- that is, it

sends a map to the line printer in terminal format and
vice versa.

The MAP command runs CCL.SV and BITMAP.SV.

3-42

0S/8 KEYBOARD COMMANDS MEMORY

3.34 MEMORY

The MEMORY command finds the highest field available in hardware or
limits the fields available in software.

The format is

MEMORY
or
MEMORY n
where
n is an octal number from 0 to 7 representing the number
of fields (each containing 4K words of memory) in
software.

For example, this command line

+MEMORY 3
limits the amount of memory available in the system to 16K words.
The following list shows all the values of n and their meaning:

all available memory fields
8K words of memory

12K words

16K words

20K words

24K words

28K words

32K words

NOUbeWwNh O

To find the amount of memory currently being used by 0S/8, type the
command with no argument. The following output indicates that a
MEMORY 4 command, entered previously, has restricted a 32K system to
only 20K words of available memory.

+ MEMORY
20K/32K MEMORY

If the system is using all available memory, the Monitor prints the
total amount. For example:

+MEMORY
32K MEMORY

The MEMORY command causes the execution of CCL.SV.

3-43

MUNG 0S/8 KEYBOARD COMMANDS

3.35 MONG

The MUNG command lets you call a predefined TECO macro to operate on a
source file. The format is

MUNG device:file, text

where
device:file is a file containing a TECO macro. If you omit
the extension, MUNG assumes .TE. 1If you type a
period after the file name, MUNG assigns no
extension.
text is an argument to the macro. If the macro
requires no argument, omit the comma in the
command line.
MUNG reads the first page of the specified file -- the macro -- into

Q-register Y. Then it enters the text into the TECO text buffer.
With the pointer at the end of the buffer, TECO executes the macro in
Q-register Y. If the text argqument is too long, MUNG prints the error
message

COMMAND TOO LONG

For complete information on TECO, see the TECO Reference Manual.

3-44

0S/8 KEYBOARD COMMANDS oDT

3.36 ODT
The ODT command enables you to debug the program currently in memory,
control its execution, and make alterations by typing ODT instructions
at the terminal.
The format is

oDT
Once you have entered the command with the RETURN key, you may examine
and modify any memory location of the program currently in memory or
use the breakpoint feature to control program execution.
When using ODT to debug a program, you must call I1/0 devices by their
permanent names. As long as ODT is in control of the system, all
user—-defined names are invalid.

For a complete discussion of ODT, see the ODT chapter.

3-45

PAL 0S/8 KEYBOARD COMMANDS

3.37 PAL

The PAL command assembles a PAL8 source file, producing an absolute
binary file with a .BN extension.

The format is

PAL output:binary.BN,output:1listing.LS,CREF.LS<input:source.PA

where
output:binary.BN is an absolute binary file and output
device
output:listing.LS is an optional listing file and output
device
output:CREF.LS is an optional file used by CREF
input:source is a PAL8 program and an input device

If you omit the extension in the input specification, PAL assumes PA.
If you omit the extension from the output files, PAL assumes BN and
LS.

The following example causes PAL to assemble a file called BOOMER.PA
and produce a listing file.

+FPAL BOOMER» BOOMER- BOOMER .FA

PAL can recall arguments from any previous COMPILE, LOAD, or EXECUTE
command that you enter on the same day.

The /C option causes PAL8 to chain to the CREF program, which produces
a cross-reference file and assigns it the name of the second output
file.

For a complete list of PAL options, see the PAL8 chapter in the 0S/8
Language Reference Manual.

PAL runs CCL.SV and PAL.SV.

3-46

0S/8 KEYBOARD COMMANDS PRINT

3.38 PRINT
The PRINT command runs a program called LPTSPL if you have such a

program on your 0S/8 system. LPTSPL can be a user-written program or
a program obtained from DECUS.

3-47

PUNCH 0S/8 KEYBOARD COMMANDS

3.39 POUNCH

The PUNCH command runs PIP and punches the file specified on the paper
tape. The format is

PUNCH output:file<input:file
If you omit the output specification, PUNCH sends the file to PTP.

0S/8 KEYBOARD COMMANDS R

3.40 R

The R command loads and starts a memory-image file from the system
device. The format is

R file.SV

R writes the block number of the first block in the file in 1location
7747 in field 0.

Since the R command loads files from the system device only, you may
not specify an input device other than DSK in the command line. 1If
you omit the file extension, R assumes SV.

For example, this command
+R TEST

looks for a program called TEST.SV on the system device and loads and
executes it.

The R command differs from the RUN command in that it does not send
the Core Control Block to the system device. To save a program that
does not have its Core Control Block in the usual place on 8YS, you
must include all the optional arguments in the SAVE command.

Always use R to call a system program, since these do not have to be
resaved. If you want to run a program that you eventually plan to
update (using ODT, for example) and then save, use the RUN and GET
command rather than R.

3-49

RENAME 0S/8 KEYBOARD COMMANDS

3.41 RENAME
The RENAME command lets you change the name of a file. The format is

RENAME device:newname<device:oldname

where
device:oldname is the file name you want to change and
the device on which it is located
device:newname is the new name and the same device

You must specify the same device for input and output in the command
line.

RENAME changes the input file name and prints the message FILES
RENAMED on the screen, followed by the old file name. Thus, if you
type

+RENAME RXA1:!FILE.FA<-RXA1!RECORD.FA

the file RECORD.PA on RXAl becomes FILE.PA. The creation date and the
contents of the input file remain the same.

You may use wildcards with the RENAME command.

3.41.1 RENAME Options
RENAME provides the following options:

e /C RENAME changes the name of the input file only if it
has the current date.

e /O RENAME changes the name of the input file only if it
does not have the current date.

o /V RENAME changes the name of all files on a device except
the ones specified as input in the command line.

e /T RENAME changes the name of the input file and gives it
the current date.

RENAME runs CCL.SV and FOTP.SV with the /R extension.

0S/8 KEYBOARD COMMANDS RES

3.42 RES

The RES command runs the RESORC program and lists the device handlers
present on an 0S/8 system. The format is

RES output:file<input:file

For a description of the input and output specifications for RES and a
list of RES options, see the chapter on the RESORC program in this

manual.

REWIND 0S/8 KEYBOARD COMMANDS

3.43 REWIND

The REWIND command runs the CAMP program and issues a rewind command
to a specified 0S/8 device controller. This command operates in the
same way as the CAMP REWIND command. For a complete description of
this command, see the CAMP chapter in this manual.

0S/8 KEYBOARD COMMANDS RUN

3.44 RUN
The RUN command loads a memory image (SV) file into memory, transfers
its Core Control Block to the system device, and begins execution at
the starting address of the program. It places the block number of
the first block in the file into location 7747 of field 0.
The format is

RUN input:file

If you enter a file name without an extension, RUN assumes SV. You
must specify a device; RUN does not assume DSK.

For example, the following RUN command GETs and STARTs PROG.SV on
RXAl.

+RUN RXA2!FROG.SV

SAVE 0S/8 KEYBOARD COMMANDS

3.45 SAVE

The SAVE command makes an executable binary file of the program
currently in memory, assigns it a name, and stores it on a device. If
you do not specify the locations in memory that you want to save, the
SAVE command automatically 1looks for the information on the current
Core Control Block.

The format is

SAVE device:file fnnnn-fmmmm, fpppp;fssss=cccc

where

fnnnn is a 5-digit octal number representing the
field (f) and starting address of a
continuous portion of memory that you want to
save

fmmmm is the final address (in the same field) of
that part of memory you intend to save

fppprp is a 5-digit octal number representing the
address of one location in memory. A single
address causes SAVE to save the entire page
on which the location occurs

; £ssss is a 5-digit octal number representing the
starting address of the program you want to
save

=cccce is a 4-digit octal number representing the

contents of the Job Status Word

If you omit the extension on the file name, SAVE appends SV. If you
omit the other arguments, SAVE finds the locations it requires in the
current Core Control Block.

The SAVE command places the following restrictions on arguments in the
command line.

® You must specify the output device. SAVE does not default to
DSK.

e The beginning and ending addresses of an area in memory
(fnnnn-fmmmm) must both appear in the same field.

® When you specify a location or an area on one page, SAVE takes
the entire page. If you call for another part of that same
page in the same command line, SAVE sends an error message to
the terminal, informing you that it has already saved the
page.

e If you omit the field number, SAVE assumes field 0.

® Avoid saving locations 7600-7777 in fields 0-2. The resident
monitor code resides in these areas of memory. To avoid
accidentally destroying a portion of the Monitor, restrict
SAVEs involving 7600 to fields above field 2.

e If you specify an address on an odd-numbered page, SAVE can
save it only if it also saves the preceding page. The system
does this automatically.

0S/8 KEYBOARD COMMANDS

3.45.1 The Job Status Word

The Job Status Word, which
location 7746 in field 0),
and how.

resides in memory with the file (at
indicates what parts of the file use memory

Bit Condition Meaning

Bit 0=1 File does not 1load into 1locations 0-1777 in
field 0 (0000-1777).

Bit 1=1 File does not 1load into 1locations 0-1777 in
field 1 (10000-11777).

Bit 2=1 Program must be reloaded before it can be
restarted because it modifies itself during
execution.

Bit 3=1 Program being run will not destroy the BATCH
monitor.

Bit 4=1 A memory image file that was generated through
the LINKER contains overlays.

Bit 5 Reserved for 0S/78 system programs.

Bits 6-9 Unused, and reserved for future expansion.

Bit 10=1 Locations 0-1777 in field 0 need not be saved
when calling the Command Decoder overlays.

Bit 11=1 Locations 0-1777 in field 1 need not be saved
when calling the USR.

The Monitor runs the SAVE command.

3-55

SET 0S/8 KEYBOARD COMMANDS

3.46 SET

The SET command enables you to modify the operating characteristics of
0S/8 by specifying certain attributes of system programs in the
command line. Use SET to make frequently required changes in system
programs, especially those with I/0O handlers.

The format is

SET device [NO] attribute [argument]

where
device indicates the handler of the device you want
to modify
NO indicates that the following attribute does
not apply
attribute is the characteristic you want to modify
argument is an optional parameter required by certain

SET commands

For details, see the chapter on the SET program in this manual.

0S/8 KEYBOARD COMMANDS SKIP

3.47 SKIP

The SKIP command runs the CAMP program and advances over the number of
files or records on a magnetic tape that you specify. The format is

SKIP MTAn: nnnn keyword
where
MTAn is any magnetic tape drive

nnnn is an unsigned decimal number representing the number
of files you want to advance over

keyword specifies FILE, RECORD, or EOD (end-of-data)

If you omit nnnn or EOD, SKIP assumes 1. If you omit the keyword,
SKIP assumes FILE.

For example, this command
+SKIF MTAO:2 RECORDS
advances the tape on MTAO forward two records.

For complete information on the SKIP command, see the chapter on the
CAMP program in this manual.

START 0S/8 KEYBOARD COMMANDS

3.48 START
The START command begins execution of the memory image program
currently in memory at the address you specify in the command line.
If you omit the address, START uses the starting location in the
current Core Control Block.
The format is
START fnnnn
where
fnnnn is a 5-digit octal number representing a field (f) and
the 1location in memory (nnnn) you want to use as a
starting address
For example, this command

+START 105355

starts executing the program currently in memory at location 555 in
field 1.

This command
+START

starts the program at the address contained in the current Core
Control Block.

The Monitor runs the START command.

3-58

0S/8 KEYBOARD COMMANDS SQUISH

3.49 SQUISH

The SQUISH command eliminates any embedded empty files on the device
you specify for input.

The format is
SQUISH device

Before it executes a command, SQUISH prints a message to ask 1if you
are sure you have specified the right device. For example:

+SQUISH RXA1?

ARE YOU SURE?

If you want to continue, type Y. If not, type any other character.

If you specify both an input and an output device in the command line,
SQUISH copies all the files from the input device to the output device
and eliminates any embedded empty files. For example:

+SQUISH RXAO0!<RXA1

If the output device is a system device, SQUISH always preserves the
system programs,

NOTE

An error during a SQUISH can corrupt the
entire contents of a device in a way
that may not be immediately apparent to
you. Therefore, do not use SQUISH
unless you have a copy of both the
system programs and your other files.

SQUISH runs CCL.SV and PIP.SV with the /S option.

3-59

SUBMIT 0S/8 KEYBOARD COMMANDS

3.50 SUBMIT
The SUBMIT command performs batch processing with optional spooling to
a file-structured output device. SUBMIT runs multiple programs and
sequences of system commands that require 1little or no interaction
with the user or operator.
The format is

SUBMIT spool device:<input:file

where

spool device: 1is optional

input:file is an input file name and device. If you omit the
device and extension, the system assumes DSK and
BI.

For a complete discussion of the BATCH program, see the BATCH chapter.

SUBMIT runs CCL.SV and BATCH.SV.

0S/8 KEYBOARD COMMANDS TECO

3.51 TECO

The TECO command summons the TECO editor, opens the files you specify
for input, and creates an output file.

The format is

TECO output:file<input:filel,...input:file5
If you omit the output specification, TECO does an edit backup on the
input file you specify. If you omit the input file extension, TECO

assumes PA.

TECO reads the first page of the input file into the text buffer
before it returns control to you.

TECO remembers the name of the output file. Thus, the next TECO
command you enter without arguments will use this file for input.

For complete information, see the TECO section in the 0S/8 Langquage
Reference Manual.

TERMINATE 0S/8 KEYBOARD COMMANDS

3.52 TERMINATE

The TERMINATE command causes the system to emulate a terminal with no
knowledge of disk drives, processor, or memory. The format is

TERMINATE

This command runs CCL.SV.

0S/8 KEYBOARD COMMANDS TYPE

3.53 TYPE

The TYPE command displays on the terminal the contents of the files
you specify for input. The format is

TYPE input:filel,...input:file5
L
TYPE displays the contents of each input file on the terminal in the
same order that you enter them in the command line. Although the
command accepts no more than five files in a line, you can extend this
number with wildcards.
For example, this command displays all files with a BS extension

+TYPE RXA11%.BS

3.53.1 TYPE Options

TYPE provides the following options:

e /C TYPE displays only files with the current date.
e /O TYPE displays only files with a noncurrent date.
o /V TYPE displays all the files on a device except the ones

you specify.

e /0 TYPE prints each file name on the terminal, followed by
a question mark. To display the file, type Y. To skip
it, type any other character.

TYPE runs CCL.SV and FOTP.SV.

UA,UB,UC 0S/8 KEYBOARD COMMANDS

3.54 ua, UB, and UC

The UA, UB, and UC commands let you store CCL commands and their
arguments in temporary files and recall them for later use. Unlike
other commands that remember arguments, UA, UB, and UC do not forget

command lines that you have entered on previous days. This is because
the system does not delete the files each time the date changes.

The format is
UA
UB command line
ucC

where

command line is the CCL command with arguments that you want to
recall

For example, this command

+uUA COFY kXAl <DSKIRECALL .BS

stores the COPY command and its arguments in a temporary file. To
execute the command, type

_Q_UA
Note that you can store and recall only three commands at a time.

Use UA, UB, and UC to recall command lines that recur throughout a
BATCH job.

0S/8 KEYBOARD COMMANDS UNLOAD

3.55 UNLOAD

The UNLOAD command

turns a magnetic tape controller off 1line and rewinds the
tape, returning to the CAMP program during the rewind. To use
the magnetic tape after the UNLOAD command, you must turn it
on line manually.

unloads TCO8 and TD8B8E DECtapes from their reels. UNLOAD
rewinds the DECtape on the unit you specify, selects a
different unit, and returns control to CAMP for another
command. This DECtape unit cannot be used until you issue
another legal command -- for example, an ASSIGN command -- to
the DECtape controller.

write-locks an RK8E disk.

The format is

+UNLOAD device

where

device is a magnetic tape, a TCO08 or TC8E DECTAPE, an RKS8E

disk

UNLOAD runs CCL.SV and CAMP.SV.

3-65

VERSION 0S/8 KEYBOARD COMMANDS

3.56 VERSION

The VERSION command prints the version numbers of the 0S/8 Monitor and
the CCL program. The format is

VERSION

0S/8 KEYBOARD COMMANDS ZERO

3.57 ZERO

The ZERO command clears the directory of the device you specify,
creating an empty file directory. The format is

ZERO device
For example, the following example clears the directory of RXAl.
+ZERO RXAl:

Use ZERO only on devices that contain user programs and data files.
If you zero the system device, you will destroy the system programs.
ZERO will not clear the directory of 8YS until it has printed a
message to ask if you are sure you want to proceed. If you do, type
Y; if you do not, type any other character.

3-67

CHAPTER 4

THE 0S/8 SYMBOLIC EDITOR

4.1 INTRODUCTION

The Editor allows you to create and modify ASCII source files. These
files may contain assembly language programs, FORTRAN and BASIC
programs, or any other information that has the format of character
strings.

The Editor is a helpful tool; however, it must be told precisely what
to do. You direct its operation by typing commands in the form of a
single letter or a letter with arguments and, in most cases, pressing
the RETURN key directly after the command line.

This chapter describes the procedures you follow to create a file and
the commands you use to modify it.

4.2 CALLING THE EDITOR
The CREATE and EDIT commands call and run the 0S/8 Editor.

The CREATE command summons the Editor to let you open and write a new
file. The format is

CREATE outdev:file
CREATE accepts no input specifications and only one file name and
device for output. You provide the input by typing in text at the
terminal.
After you press the RETURN key to execute the command, the system
Editor displays a number sign (#) on the screen to indicate that it is
ready to receive your first instruction.
Thus,

~LREATE RXA1!RUN1.FA
i 3

opens a file named RUN1.PA on output device RXAl.

To enter text, you must put the Editor into text mode with the I or A
instruction. (For details on text mode, see Section 4.3.1.)

The EDIT command summons the 0S/8 Editor to let you retrieve and work
on a source program previously stored as a file. The format is

EDIT outdev:file=indev:filel,...indev:file9

THE 0S/8 SYMBOLIC EDITOR

The Editor signals with a number sign (#) as soon as it is ready to
accept your first instruction.

To work on a source program that you have created and stored as a file
(or sequence of files), enter the file or files as input in the EDIT
command line. EDIT will accept up to nine input files in a line.

The Editor allows only one output file in a command line. You must
specify an output file to receive the modified version of your source
program.

For example, the following command opens input file TABLE.FT on RXAOQ
and a file called FILE1.FT on RXAl for output (The Editor signals when
ready.):

EDNIT RXALSFILEL .FT<RXAOITABLE.FT

(L]}

To cause the Editor to read in the first page of the input file, type
R in response to the number sign. (For details on Editor commands,
see Section 4.3.2.)

4.3 MODES OF OPERATION

The 0S/8 Editor operates in two modes: the command mode and the text
mode.

In the command mode, the Editor prints a # on the terminal to indicate
that it is waiting for you to type a command on the keyboard.

In text mode, the Editor accepts anything you type at the keyboard as
part of the file you are creating or modifying.

The key commands in Table 4-1 enable you to transfer between modes or
return control to the Keyboard Monitor.

Table 4-1
Editor Key Control Commands

Mode in Which

Command Used Meaning
CTRL/C Text and Command Returns control to the
Modes Keyboard Monitor. All text

that has been edited is lost.
CTRL/C should be used with
utmost caution, since no
output file will be stored.

CTRL/O Command Mode Stops the 1listing of text.
Returns control to Command
Mode.

CTRL/L Text Mode Returns the Editor to Command
Mode.

THE 0S/8 SYMBOLIC EDITOR

4.3.1 Text Mode

To put the Editor in text mode so that you can enter a new file -- or
add to one that you have already created -— type the Insert or Append
command. The format is:

I RETURN
or

A RETURN

These commands cause the Editor to place the text that you enter at
the terminal into its text buffer. If you use the Insert command, the
Editor stores the text before the first line of any existing material
in the buffer. The Append command instructs the Editor to place the
text you enter after the last line of existing text in the buffer.

The Editor accepts text in both upper and lower case.

To enter a line of text that you have typed on the terminal, press the
RETURN key.

For example:

$1
HEAD OF THE BUFFER

or

3A
ROTTOM OF THE RUFFER

Before you type RETURN, read the 1line over for errors. Make
corrections with the DELETE key or the CTRL/U key command. DELETE
erases the last character you typed. CTRL/U deletes the entire 1line.
(CTRL/U is equivalent to typing DELETE back to the beginning of the
line.)

To correct a line that you have sent to the buffer with RETURN, you
must put the Editor in command mode with CTRL/L and use the
appropriate editing commands (see Section 4.3.2.4).

The buffer holds approximately 5600 characters (decimal). When 256
locations remain, the Editor rings the warning bell on the terminal.
From this point until the buffer is full, typing RETURN causes the
Editor to enter a line of text, then switch to command mode and ring
the terminal bell. You may continue to enter text by this method one
line at a time wuntil the Editor detects the absolute end of its
buffer.

To continue, you must first empty the buffer,. The Page command
enables you to send the contents of the buffer -- or any part of
it -- to an output device. To use the Page command, return to command
mode with CTRL/L. The format of the command is

P RETURN
or

nP RETURN

or

m,nP RETURN

THE 0S/8 SYMBOLIC EDITOR

n is a line you want to send to an output device.

n,m is a sequence of lines (n through m) that you wish
to send to an output device

The P command automatically appends a form feed to the output, thus
producing a page of text. This allows you to paginate the contents of
your file.

Before you start typing in the next page, make sure that no text
remains in the buffer. To do this, use the Kill command {see Section
4.3.2.3), which clears the buffer. Then type the Append command (to
put the Editor back in text mode) and continue entering your source
program.

To return to command mode at any point, type CTRL/L.

To end the session —- that is, to place all remaining text in the
output file, close the file, and return control to the Keyboard
Monitor -- use the Exit command. The format is:

E RETURN

4.3.2 Command Mode

In command mode, the Editor performs the operations you specify on the
text in the buffer.

To enter text into the buffer from your input device, use the Read
command. The format is:

R RETURN
The Read command instructs the Editor to read a page of text from an
input device into the buffer -- that 1is, to read text until it
encounters a form feed character. If the buffer contains text

already, the Editor adds the new page to 1t.

The Editor provides five types of command: Input, Listing, Output,
Editing, and Search.

Each command consists of a single letter, preceded optionally by one
or two numeric arguments. The letter 1indicates the operation; the
arguments in most cases tell the Editor which lines to act upon.

Enter the commands after the number sign prompt in upper case only.
The general format is

X RETURN
or

nX RETURN
or

m,nX RETURN

THE 0S/8 SYMBOLIC EDITOR

is a command

are line numbers (m must be less than n.)

Except for noted exceptions, you terminate the command with the RETURN

key.

4.3.2.1

Input Commands - Input commands instruct the Editor to accept

text from the terminal (text that you type in) or from an input device
(text that you have stored as a file). To execute the commands, type
RETURN key.

Note:

Special characters, including lower-case letters may be input
to the file. The ESCape character is echoed as a dollar sign
($) for readability.

In these commands, the Editor ignores ASCII codes 340 through
376. These codes 1include the <codes for the 1lower-case
alphabet (ASCII 341-372). The Editor returns to the command
mode only after encountering a form feed or when the text
buffer becomes full.

Table 4-2
Editor Input Commands

Command Meaning

nl

Append the text being typed at the keyboard until a
form feed (ASCII 214 or CTRL/L) is encountered. The
form feed returns control to command mode. Text
input following the A command is appended to whatever
is currently in the text buffer.

Insert whatever text is typed before line 1 of the
text buffer. The form feed (CTRL/L) terminates the
insertion process and returns control to the command
mode.

Insert whatever text is typed (until a form feed |is
typed) before line n of the text buffer.

Read one page from the input device specified to the
EDIT or CREATE commands, and append the new text to
the current contents of the buffer. If no input file
was indicated or if no input remains, a guestion mark
(?) is printed and the Editor returns to the command
mode.

THE 0S/8 SYMBOLIC EDITOR

4.3,2.2 Listing Commands - List commands display on the terminal all
or part of the contents of the text buffer. Type RETURN key to
execute.

Table 4-3
Editor Listing Commands

Command Meaning

L List entire contents of the text buffer on the
terminal.

nL List line n of the text buffer on the terminal.

m,nL List lines m through n of the text buffer on the
terminal.

G Get and 1list the next 1line that has a label

associated with it. A label in this context is any
line of text that does not begin with one of the
following:

space (ASCII 240)
/ (ASCII 257)
TAB (ASCII 211)
RETURN (ASCII 215)

At the termination of a G command, control returns to
the command mode with the current line counter equal
to the line just listed.

nG Get and list the first line that begins with a label,
starting the search at line n.

B Print the number of available memory locations in the
text buffer. The Editor returns the number of
locations on the next line. To estimate the number
of characters that can be accommodated in this area,
multiply the number of free locations by 1.7.

The Editor remains in command mode after a list command and updates
the value of the current line counter to be equal to the number of the
last line printed.

4.3.2.3 Output Commands - Output commands send text from the buffer
to a device you specify for output. Type RETURN key to execute.

THE 0S/8 SYMBOLIC EDITOR

Table 4-4
Editor Output Commands

Command

Meaning

nP

m,nP

Output the current buffer and transfer all remaining
pages of input to the output file; close the output
file and enter it in the directory. When this buffer
is full, the text is output to the indicated output
file. The E command automatically outputs a form
feed after the 1last 1line of output, and returns
control to the Monitor.

NOTE

If you do not use the E command to close
a file after editing, any changes,
additions, or corrections will not
appear in the output file. Thus, the E
command should usually be the last
command that you enter in an editing
session (also see Q command).

Write the entire text buffer to the output file.
Write line n of the text buffer to the output file.

Write lines m through n, inclusive, to the output
file.

NOTE

The P command automatically appends a
form feed to its output, thus producing
a page of text. This command allows you
to paginate your listing. However, if
the K command is not used after a P
command, the text remains in the buffer
and is again output with the new text
read in before the next P command.

Kill the buffer. All text is deleted from the text
buf fer.

NOTE

The Editor ignores the commands nK or
m,nK, with the result that you cannot
destroy the buffer by mistyping a List
command (m, nL).

(continued on next page)

THE 0S/8 SYMBOLIC EDITOR

Table 4~4 (Cont.)
Editor Output Commands

Command

Meaning

nN

nv

m,nv

Immediate end-of-file. The Q command causes the text
buffer to be output. The file 1is then closed
(entered into the directory with the current date as
its creation date), and control returns to the
Monitor.

Write the current buffer to the indicated output file
and read the next 1logical page. The N command is
equivalent to a P, K, R command seguence.

Write the current buffer to the output file, kill the
buffer, and read the next logical page. This is done
n times until the nth logical page is 1in the text
buffer. Control then returns to command mode. (The
N command cannot be used with an empty text buffer,
since there is no text to be written. If the buffer
is empty when the N command is attempted, a guestion
mark (?) is printed.) For example, to read in the
fourth page of a file, give the commands

2R (to read the first page)
and

#3N (to read three more pages)
The V command causes the entire text buffer to be
listed on the line printer. The V command only works
with the LA78 line printer. It does not work with
the LQP78 line printer.

List line n of the buffer on the line printer.

List lines m through n, inclusive, on the 1line
printer.

4.3.2.4

Editing Commands - The following commands permit deletion

alteration of text in the buffer. Type RETURN Kkey to execute.

or

THE 0S/8 SYMBOLIC EDITOR

Table 4-5
Editing Commands: Deletion and Alteration

Command Meaning

nC Change the text of line n to the line(s) typed after
the command is entered (typing a form feed terminates
the text input). The C command is equivalent to a D
command followed by an I command.

m,nC Delete lines m through n, and replace with the text
line(s) typed after the command is entered. (Typing
CTRL/L indicates the end of the changed lines.)
The C command utilizes the text collector in altering
text.

nD Delete line n from the buffer.

m,nD Delete lines m through n from the buffer.

nY Yank (read) in n pages from the input file into the
text buffer, without writing any output. For
example,

5Y
reads through four logical pages of input, deleting
them without producing output. The fifth page is
read into the text buffer, and control automatically
returns to command mode.
NOTE

Use this command with caution; it
irrevocably deletes the contents of the
text buffer.

m,n$pM Move lines m through n directly before line p in the
text buffer. The $ character means that you type the
dollar sign key, not ESCape, ALTMODE, or other
possibilities. The o0ld occurrence of the moved text
is then removed. This command can move one line, but
it needs three arguments. You can provide three
arguments by specifying the same line number twice.
For example,

¥5y6%21M
moves line 6 in front of line 21.
4.3.2.5 Search Commands - Search commands cause the Editor to search

a text
The Edito
character

Search co

for occurrences of characters and strings that you specify.
r sets the current line pointer at the 1line containing the

s you want to find.

mmands are discussed in detail in Section 4.4.

THE 0S/8 SYMBOLIC EDITOR

Table 4-6
Editor Search Commands

Command Meaning
S Perform a character search (Section 4.4.1).
J Perform an interbuffer search for character strings

(Section 4.4.2.2).

F Look for next occurrence of the string currently
being sought.

ESC($) Perform an intrabuffer character string search.

4.3.2.6 Special Command Mode Characters - The Editor recognizes the
following special characters in command mode:

Table 4-7
Editor Special Characters: Command Mode

Character Function

Period (.) The Editor assigns an implicit decimal
number to the 1line on which it is
currently operating. At any given time
the period, which represents this decimal
number, may be used as an argument to a
command. In the following example, the L
command is used since it allows text to
be listed. Typing

30[—
means list the current line. Typing

$.-1r.41L

means list the line preceding the current
line, the current 1line, and the line
following it, and then update the current
line counter to the decimal number of the
last line printed. The Editor updates
the current line counter, represented by
the period, as follows:

e After an R (Read page) or A (Append)
command, the period is egqual to the
number of the last 1line in the
buffer.

® After an I (Insert) or C (Change)
command, the period is equal to the
number of the last line entered.

(continued on next page)

THE 0S/8 SYMBOLIC EDITOR

Table 4-7 (Cont.)

Editor Special Characters: Command Mode

Character

Function

Period (.) (Cont.)

Slash (/)

LINE FEED Key

Right-Angle Bracket (>)

® After an L (List) or S (Search)
command, the period is equal to the
number of the last line listed.

o After a D (Delete) command, the
period is equal to the number of the
line immediately after the deletion.

e After a K (Kill) command, the period
is equal to 0.

o After a G (Get and 1list) command,
the period is equal to the number of
the line displayed by the G.

e After an M (Move) command, the
period is not updated and remains
whatever it was before the command.

The symbol slash (/) has a value equal to
the decimal number of the last line in
the buffer. It may also be used as an
argument to a command. For example,

$10s/L

means list from line 10 to the end of the
buffer.

When the Editor is in command mode,
pressing the LINE FEED key has the same
effect as

#.4H1L

which causes the Editor to display the
line following the current one and to
increment the value of the current line
counter (dot) by one. LINE FEED does not
perform this function while in the text
mode.

Typing the right-angle bracket (>) while
in command mode is equivalent to typing

#0410

and causes the Editor to echo > and then
display the 1line following the current
line. The value of the current 1line
counter is increased by one so that it
refers to the last line displayed.

(continued on next page)

THE O0S/8 SYMBOLIC EDITOR

Table 4-7 (Cont.)

Editor Special Characters: Command Mode

Character

Meaning

Left-Angle Bracket (K)

Equal Sign (=)

Colon (:)

ESCape Key

In command mode, typing the left-angle
bracket (<) is equivalent to typing

#.-1L

and causes the Editor to echo < and then
print the 1line preceding the current
line. The value of the current 1line
counter 1is decreased by one so that it
refers to the last line printed.

In the command mode, using the equal sign
in conjunction with either the 1line
indicator period (.) or slash (/) causes
the Editor to display the decimal value
of the argument preceding 1it. You can
find by this method the number of the
current line (.=nnnn) or the total number
of lines in the buffer (/=nnnn).

The colon performs exactly the same
function as the equal sign (=).

When the Editor is in command mode,
pressing the ESCape key signals an
intrabuffer character search. It echoes
as a dollar sign ($) on the terminal
screen. When the Editor is in text mode,
the Escape key echoes as a dollar sign,
but it is stored in the file as an ESCape
character (033).

4.4 SEARCHING A TEXT

The following search commands enable you to make additions and

corrections in your text. The Editor searches for occurrences of the

single character or character string that you specify.

4.4.1 Single-Character Search -- the S Command

The format of a single-character search is:

S RETURN
X

where

X is the alphanumeric character you want to search

for.

THE 0S/8 SYMBOLIC EDITOR

To specify a line or a sequence of lines that you want to search, use
the following format:

nS RETURN
n,mS RETURN

For example, the following command causes the Editor to search lines
20-40 for an occurrence of the character B:

£$205 40S
B

The Editor displays the character it is searching for and everything
preceding it in the line. At this point you can perform the following
operations.

® Delete the entire portion of the line not yet displayed and
terminate the line and the search by pressing the RETURN key.

® Delete characters from right to left by typing the DELETE key.

® Insert characters after the last one printed simply by typing
them.

e Insert a carriage return/line feed, thus dividing the 1line
into two, by pressing the LINE FEED key followed by CTRL/L.

® Continue searching the line to the next occurrence of the
search character by typing CTRL/L.

® Change the search character in the line and continue searching
by typing CTRL/G(BELL) followed by the new search character.
This allows all editing to be done in one pass.

e Type CTRL/G(BELL) twice to terminate the command.

The usual form of the character search command is #.S, followed by the
RETURN key and the character to be located. Use this form of the
command to modify the current line.

4.4.2 The Character String Search

The Editor can search the buffer for any unique combination of
characters. 1In a character string search, the Editor sets the current
line pointer at the 1line containing the first occurrence of the
string.

Two types of character string search are available: intrabuffer and
interbuffer.

4.4.2.1 1Intrabuffer String Search - In an intrabuffer search, the
Editor scans the text in the buffer for the string you specify. If it
fails to find an occurrence of the string, it prints a question mark
and returns to command mode.

To initiate an intrabuffer search, type the ESCape key in response to
the Editor's prompt and enter the string. (ESCape echoes as a dollar
sign.) The string must occur in one line.

THE 0S/8 SYMBOLIC EDITOR

If you wish to begin the search at line 1 of the buffer, terminate the
string with a single gquotation mark ('). If you wish to begin the
search at the current line + 1, use a double guotation mark (") to
terminate the string.

The format of an intrabuffer search command is:

$string' RETURN

or
$string" RETURN
where
$ is a prompt character printed by the Editor
string is a group of up to 20 ASCII characters
' (single quote) causes the Editor to begin searching at 1line

1l of the buffer

" (double guote) causes the Editor to begin searching at
current line +1

NOTE

Do not include single or double
guotation marks in a string because the
Editor recognizes them as instructions.

The Editor places the number of the first line containing the search
string in the current line indicator and displays the prompt sign (#).
To display the number on the terminal, type the indicator dot (.)
followed by an equal sign. The format is:

You can use a line number you obtain this way as an argument in any
Editor command.

For example, the following command causes the Editor to search for the
first occurrence of the string CDF10, beginning at line 1 of the
buffer:

#$CIF10”
¥

The response to this command is revealed as line 35:

t.=

I&

Command lines can include more than one instruction. For example,
assume that the buffer contains the following text:

ABC DEF GJO
1A2B3C4D5E6
.STRINGABCD

THE 0S/8 SYMBOLIC EDITOR

To list the line that contains ABC, type
#$AECL

The search begins with line 1 and continues until the Editor finds the
string. The Editor sets the current line counter equal to the line in
which the string ABC occurred. The L (List) command causes the 1line
to be printed as follows:

AEC DEF GJO

The Editor returns to command mode, awaiting further commands. If you
want to find the next reference to ABC, type:

L

In this case, the guotation marks (") cause the last string the Editor
searched for to be used again, with the search beginning at the
current line +1. It is not necessary to enter the search string
again. The command may be used several times in succession. For
example, if you want to find the fourth occurrence of a string
containing the characters FEWMET, type

$SFEWMET’ **"L

This command will list the line which contains the fourth occurrence
of that string. The L command (or any other command code) can follow
either ' or ". The L command causes the line to be 1listed if the

Editor finds the string.
To clear the text string buffer, type

L 3
The Editor responds with a question mark and clears the text string
buffer.

The properties of the commands ' and " allow for easy and useful
editing, as the following example illustrates. To change the CIF 20
to CIF 10, enter the following commands:

#$DUMy “$CIF 20°C
CIF 10 /NEW FIELD

The above set of instructions first causes the Editor to start at line
1 and search for the line beginning with DUM,. Then it searches for
CIF 20, starting from the line after the line containing DUM,. The
line number of the line containing the string CIF 20 becomes the
current line number. The C command applies the instructions of the
command line to what is typed in the next line -- that is, the string
CIF 10.

Since this search feature produces a line number as a result, any
operations which require a line number will accept a string instead.
For example:

#3STRING +4L

lists the fourth line after the first occurrence of the text STRING in
the text buffer.

¥$LAREL1y " rSLAREL2s "L

lists all lines between the two labels, inclusive.

THE 0S/8 SYMBOLIC EDITOR

*EFFLUGS

performs a character search on the line which contains PFLUG. (Type
the search character after typing the RETURN key that enters the
line.)

In commands that include both strings and explicit numbers, strings
should appear first. For example, the following commands:

$1+$BADI ‘L

will not list the next line after the string BAD! occurs. The
correct syntax is:

FSRAN! 7 +H1L -

4.4.2.2 Interbuffer String Search -- J Command - In an interbuffer
search, the Editor scans the contents of the text buffer for the
character string you specify. If it fails to find an occurrence of
the string, it sends the buffer to an output file, clears the buffer,
and reads in the next page of text from the input file. The Editor
then resumes the search at line 1 of the new buffer. When the input
file is exhausted, the Editor prints the number sign prompt (#) and
awaits your next instruction.

If the search 1is successful, the Editor sets the current 1line
indicator eqgual to the number of the 1line containing the first
occurrence of the string.

The format for an interbuffer search is:

J RETURN
$string'
where
$ is a prompt character printed by the Editor
string is a group of up to 20 ASCII characters
' (single guote) causes the Editor to begin searching at 1line

1 of the buffer.

To display the number of the line containing the string, type the
current 1line indicator dot (.) after the Editor's number sign prompt
(#), followed by an equal sign. The format is:

For example, the following command instructs the Editor to make an
interbuffer search for the string WRITE, beginning at line 1 of the
current buffer. The .= construction reveals that 1line 4 of the
current buffer contains the string.

tJ
SWRITE’
3.=0004

THE 0S/8 SYMBOLIC EDITOR

To find further occurrences of the string WRITE, type the F command.
The F command searches the buffer for the last character string
entered, starting from the current line count + 1. The displayed line
following the F command line contains a number prompt sign (#), the
format you type to obtain a line number (.=), and the 1line number.
The result is:

¥

$.=0008

This example causes a search for the string WRITE, starting at the
current line + 1. 1If you have specified no output file, the J or F
command reads the next input buffer without attempting to produce any
output.

NOTE

Use the J command for interbuffer
searches only. After the J or F command
has processed the entire input file,
execute either an E or Q command to
close the output file.

The following commands may be used to abort the string search command,
once given:

Table 4-8
Aborting Editor String Search Commands

Command Explanation

CTRL/U A CTRL/U will return control to the Editor command
mode if you type it while entering text in a string
search command.

DELETE Pressing the DELETE key while entering text for a
string search causes the text so far entered to be
ignored and allows a new string to be inserted. The
Editor displays a dollar sign ($) in response.

4.5 EDITOR OPTIONS
The Editor provides the following options:

e /B The Editor converts two or more spaces to a TAB when
reading from an input device.

e /D The Editor deletes the o0ld copy of the output file (if
one exists) before opening the new output file on the
device. If you do not specify /D, the Editor does not
delete the o0l1ld copy of the output file until you have
transferred all data to the new file with the E or Q
command.

THE 0S/8 SYMBOLIC EDITOR

4.6 EDITOR ERROR MESSAGES

Two types of error messages, nonfatal and fatal, are generated when an
error is made while running the Editor.

Nonfatal errors, such as an incorrect format in a command string or a
search for nonexistent information, cause the Editor to display a
guestion mark. For example, if a command requires two arguments, and
only one 1is provided, the Editor will display a question mark (?),
perform a carriage return/line feed, and ignore the command as typed.
Similarly, if you type an illegal or unrecognized command character,
the error message ? will be displayed, followed by a carriage
return/line feed; the command will be ignored. However, if you
provide an argument for a command that does not require one, the
argument may be ignored and the normal function of the command
performed. The following examples illustrate nonfatal errors that you
may encounter while using the Editor.

Table 4-9
Nonfatal Editor Error Messages

Condition/Message Explanation

L The buffer is empty. Nonexistent information is
? requested.

7,5L The arguments are in the wrong order. The

? Editor cannot list backward.

17$10M This command requires two arguments before the

? $; only one was provided.

H Nonexistent command letter.

?

Major errors cause control to return to the Monitor and may be due to
one of the causes listed in Table 4-2. These errors cause a message
to be printed in the form

n is an error code listed in the table
C indicates that control has passed to the Monitor.

These errors generally result in complete loss of the output file.

THE 0S/8 SYMBOLIC EDITOR

Table 4-10
Editor Error Codes

Error Code

Meaning

Editor failed in reading a device. Error occurred in
device handler; most likely a hardware malfunction.

Editor failed in writing onto a device; generally a
hardware malfunction.

File close error occurred. For some reason the
output file could not be closed; the file does not
exist on that device.

File open error occurred. This error occurs if the
output device 1is a read-only device or if no output
file name is specified on a file-oriented output
device.

Device handler error occurred. The Editor could not
load the device handler for the specified device.
This error should not normally occur.

4,7 SUMMARY OF EDITOR COMMANDS AND SPECIAL CHARACTERS

The command and special characters discussed in this chapter are

summarized in Table 4-11.

Table 4-11
Editor Command and Special Characters

Command

Format Meaning

A Append the following text being typed at
the keyboard until a CTRL/L (form feed)
is typed. The form feed returns control
to the command mode. Text input
following the A command is appended to
whatever is present in the text buffer.

B List the number of available memory
locations in the text buffer. The Editor
returns the number of locations on the
next line. To estimate the number of
characters that can be accommodated in
this area, multiply the number of free
locations by 1.7.

nC Change the text of line n to the 1line(s)
typed after the command is entered.
(Typing a CTRL/L terminates the input.)

(continued on next page)

THE 0S/8 SYMBOLIC EDITOR

Table 4-11 (Cont.)
Editor Command and Special Characters

Command Format Meaning

C (Cont.) m,nC Delete lines m through n and replace with
the text line(s) typed after the command
is entered. (Typing CTRL/L indicates the
end of the inserted lines.)

D nD Delete line n from the buffer.
m,nD Delete lines m through n from the buffer.
E E Output the text buffer and transfer all

remaining pages of the input file to the
output file, closing the output file and
returning to the Monitor.

F F Follows a string search. Look for next
occurrence of the string currently being
sought (by the J command).

NOTE

If the search fails while you are using
the F command, further commands cause
the system to prompt with a ?. The file
must be closed and then reopened.

G G Get and list the next 1line that has a
label associated with it. A label in
this context is any 1line of text that
does not begin with one of the following:

space (ASCII 240)
/ (ASCII 257)
TAB (ASCII 211)
RETURN (ASCII 215)

At the termination of a G command,
control goes to the command mode with the
current line indicator (.) equal to the
line just listed.

nG Get and list the first line that begins
with a label, starting the search at line
n.
I I Insert whatever text is typed before line

1 of the text buffer. (Typing CTRL/L
terminates the entering process and
returns control to the Editor command
mode.)

nI Insert whatever text is typed (until a
CTRL/L is typed) before 1line n of the
text buffer.

—— em ——— e

(continued on next page)

THE 0S/8 SYMBOLIC EDITOR

Table 4-11 (Cont.)
Editor Command and Special Characters

Command Format Meaning

J J Interbuffer search command for character
strings (see Section 4.4.2.2 describing
the InterBuffer Character String Search).

NOTE
If the search fails while you are using
the J command, further commands cause
the system to prompt with a ?. The file
must be closed and then reopened.

K K Kill the buffer. Delete all text from
the text buffer.

NOTE
The Editor ignores the commands nK and
m,nK with the result that you cannot
destroy the buffer by mistyping a List
command (m,nL).

L L List entire contents of the text buffer
on the terminal.

nL List line n of the text buffer on the
terminal.

m,nL List lines m through n of the text buffer
on the terminal. Control then returns to
command mode.

M m,n$pM Move lines m through n directly before
line p in the text buffer. The §
character represents typing the dollar
sign key, and not other possible keys.
The o0ld occurrence of the moved text is
removed.

N N Write the current buffer to the output
file and read the next page.

nN Write the current buffer to the output
file, kill the buffer, and read the next
page. This action is repeated n times
until the nth page is in the text buffer.
Control then returns to command mode.
You may not use the N command with an
empty text buffer. A gquestion mark (?)
is printed if you attempt to do this.

L

(continued on next

page)

THE 0S/8 SYMBOLIC EDITOR

Table 4-11 (Cont.)
Editor Command and Special Characters

Command

Format

Meaning

$ (ESC)

nP

m,nP

nv
m,nV

nY

STEXT'
"

Write the entire text buffer to the
output file. The P command automatically
outputs a FORM character (214) after the
last line of output.

Write line n of the text buffer to the
output file and a FORM character.

Write lines m through n, inclusive, to
the output file and a FORM character.

Immediate end-of-file. Q causes the text
buffer to be output and the file closed.

Read one page from the input device and
append the new text to the current
contents of the text buffer. If no input
file was indicated or if no input
remains, a guestion mark (?) is displayed
and control returns to the command mode.

Character search command (see Section
4.4.1).

List the entire text buffer on the 1line
printer.

List line n of the text buffer on the
line printer.

List lines m through n, inclusive, on the
line printer.

Yank (read) in a logical page from the
input file, without writing any output.
For example,

#5Y

reads through four 1logical pages of
input, deleting them without producing
output. The fifth page is read into the
text buffer, and control automatically
returns to the command mode.

Perform a character string search for the
string TEXT. Following a string search,
" causes a search for the next
occurrence of the string (see Section
4.4.2.1 describing the Intrabuffer
Character String Search).

(continued on next page)

THE 0S/8 SYMBOLIC EDITOR

Table 4-11 (Cont.)

Editor Command and Special Characters

Command

Format

Meaning

«= Or .:

/= or /:

LINE FEED Key

Typing these characters obtains the
current line number (.=) and the last
line number (/=) in the text buffer. The
number is printed by the Editor
immediately after you type the -equal
sign. (The colon character is egquivalent
to the equal sign.)

Equivalent to .+1L, list the next line in
the text buffer.

Equivalent to .-1L, 1list the preceding
line in the text buffer.

Equivalent to .+1L, list the next line in
the text buffer.

Print the current Editor version number.

CHAPTER 5

THE COMMAND DECODER

The Command Decoder is a subroutine that 0S/8 system programs use to
interpret the I/O specifications for devices and files and for options
that you enter in the command line.

5.1 ENTERING I/0 SPECIFICATIONS

When you run a utility program with the R command, the program calls
the Command Decoder, which prints an asterisk to reguest your I/0
specifications.

I/0 specifications to the Command Decoder have the following general
format (Device and file names must adhere to the conventions described
in Chapter 2.):

.R utility
*output specs<input specs/options

The Command Decoder accepts 0 to 3 output files and 0 to 9 input
files. Keep in mind, however, that the system programs using the
Command Decoder determine their own I/0 requirements and restrictions.
These are described in the chapters on system programs in this manual.

Table 5-1 contains examples of 1legal output specifications to the
Command Decoder.

Table 5-1
Examples of Output to the Command Decoder

File Format Meaning

EXPLE.EX Output to a file named EXPLE.EX on device
DSK (the default file storage device).

LPT: Output to the LPT. This format generally
specifies a nonfile-structured device.

DTA2:EXPLE.EX Output to a file named EXPLE.EX on device
DTA2.

DTAZ2:EXPLE.EX[99] Output to a file named EXPLE.EX on device

DTA2. A maximum output file size of 99
blocks is specified.

null No output specified.

Table 5-2 contains examples of 1legal input specifications to the

Command Decoder.

THE COMMAND DECODER

Table 5-2

Examples of Input to the Command Decoder

File Format

Meaning

DTA2:INPUT

DTA2:INPUT.EX

INPUT.EX

PTR:

DTA2:

null

Input from a file named INPUT.df on device
DTA2. "df" is the assumed input file
extension specified in the Command Decoder.

Input from a file named INPUT.EX on device
DTA2. In this case .(EX overrides the
assumed input file extension.

Input from a file named INPUT.EX. If there
is no previously specified input device in
the command line, input is from device DSK,
the default file storage device;
otherwise, the input device is the same as
the last specified input device.

Input from device PTR; nonfile-structured
devices do not require a file name.

Input from device DTA2 treated as a nonfile
structured device, as, for example, in the
PIP command line:

XTTY/L<DTAR:
No LOOKUP operation is performed in the
last two formats because in each case the
device is assumed to be nonfile structured.
Repeats input from the previous device
specified (must not be first in input list,

and must refer to a nonfile-structured
device). For example:

X <FTRSsy
(two null files) indicates that three paper

tapes are to be loaded.

NOTE

Whenever you omit a file extension from
an input file specification, the Command
Decoder performs a LOOKUP for the given

name

which the system program has

appended an assumed extension If the
LOOKUP fails, a second LOOKUP is made
for the file to which a null (zero)
extension has been appended.

THE COMMAND DECODER

5.2 COMMAND DECODER ERROR MESSAGES

If the Command Decoder detects an error in the command line, it prints
one of the error messages in Table 5-3. After the error message, the
Command Decoder starts a new line, prints an asterisk (*), and waits
for another command line.

Table 5-3
Command Decoder Error Messages

Error Message Meaning
ILLEGAL SYNTAX The command line is formatted
incorrectly.
TOO MANY FILES More than 3 output files or 9 input

files were specified (in special mode,
more than 1 output file or more than 5
input files).

device DOES NOT EXIST The specified device name does not
correspond to any permanent device
name or to any user-assigned device
name.

name NOT FOUND The specified input file name was not
found on the selected device.

5.3 THE CCL AND THE COMMAND DECODER

The CCL uses its own copy of the Command Decoder instead of the copy
available from the Monitor. Thus, the CCL Command Decoder has several
options not available via standard USR calls to the 0S/8 Command
Decoder, for example, multiple default extensions.

For complete information on the Command Decoder, see the 0S/8 Software
Support Manual.

CHAPTER 6

BATCH

6.1 INTRODUCTION

0S/8 BATCH provides PDP-8 users with a batch processing monitor that
is integrated into the 0S/8 monitor structure. The system is
organized in such a way that it may be used in either a keyboard input
configuration or as a batch stream processor.

BATCH may be run on any 0S/8 system equipped with at least 12K of
memory. A line printer, although optional, is highly desirable.
BATCH will support up to 32K of memory and any 1I/0 devices that are
present in the system.

0S/8 BATCH processing is ideally suited to frequently run production
jobs, large and long-running programs, and programs that require
little or no interaction with the user. BATCH permits you to prepare
a Jjob on punched cards, high-speed paper tape or the 0S/8 system
device and leave it for the computer operator to start and run.
Output is returned to you in the form of line printer and/or
teleprinter 1listings that include program output as well as a
comprehensive summary of all action taken by the user program, the
monitor system and the computer operator.

BATCH provides optional spooling of output files. This feature serves
to increase throughput on any system, but it is particularly valuable
when a line printer is not available. BATCH also performs extensive
command analysis and error diagnosis, as well as detailed interaction
with the user/operator to facilitate initializing the system and
establishing system parameters.

Almost any program that runs under interactive 0S/8 may also be run
under BATCH. Since BATCH is called from the keyboard in the same
manner as any other system program, interactive users may use BATCH to
execute multiprogram utility routines, even when continuous batch
processing is not desired.

With a few exceptions, BATCH uses the standard 0S/8 command set. This
chapter assumes that you are familiar with the operation and use of
0Ss/8.

6.2 BATCH PROCESSING UNDER 0S/8

0S/8 BATCH maintains an input file and an output file. The BATCH
input file may be a punched card, high-speed paper tape, disk, or
DECtape file consisting of a series of BATCH commands. If the input
file is a disk or DECtape file, it must reside on the 0S/8 system
device or on a device whose handler is coresident with the 0S/8 system
device (e.g., RKBO on RKO5 systems).

BATCH

6.2.1 Input Files

Each command in the BATCH input file occupies one file record. If the
file is a punched card file, each punched card constitutes one record,
which must contain one complete BATCH command. If the file resides on
paper tape, disk, or DECtape, each record consists of one logical line
or of all the characters between two line terminators, including the
second terminator.

6.2.2 Output Files

The BATCH output file is a line printer listing on which BATCH prints
job headers, certain messages that result from conditions within the
input file, an image of each record in the input file, and certain
types of user output. If a line printer is not present in the system,
the output file is printed on the terminal.

6.2.3 I/0 Devices

BATCH accepts user input files (i.e., program and data files) from any
device in the 0S/8 system; however, high-speed paper tape input files
are not allowed when the BATCH input file also resides on high-speed
paper tape. User output files may be directed to any output device in
the system.

6.2.4 Spooling

You may optionally spool output files with BATCH. When you request
spooling, every output file is assigned a file name from a list of
names maintained by BATCH and directed to a file-structured spool
device instead of to the user-specified device. Spooling of output
files increases BATCH throughput when system resources are scarce and
permits you to postpone slow output operations until a more favorable
time. For example, you may initialize a batch processing run that
generates many output listings so that it reroutes all listings from
the terminal or line printer to a specified DECtape unit. You may
then dump this DECtape onto the appropriate hard copy device after the
run, when more time is available. The spool device may be any
file-structured device you select.

To call 0S/8 BATCH from the keyboard, type

.k BATCH
in response to the dot generated by the 0S/8 monitor. BATCH then
calls the 0S/8 Command Decoder to obtain its parameters, input device,
and file name (if file-structured). If CCL is enabled, you may also
invoke BATCH via the SUBMIT command, in which case the BATCH

parameters, input device, and file name (if file-structured) are
specified on the same line as the SUBMIT command.

6.2.5 Entering FPile Specifications
The format for a BATCH command string is:

*SPDV: <DEV:INPUT/option/option

where

SPDV:

DEV: INPUT

BATCH

is the device on which to spool nonfile-structured
output. If you do not specify SPDV:, no spooling is
performed. Note that spooling applies only to
nonfile-structured output devices specified to the
Command Decoder. BATCH does not spool the output of
programs such as FOTP, which use a special mode of the
Command Decoder.

is the input device and file if the input is from SYS:
or a device whose handler is coresident with SYS:.

The default extension for BATCH input files is .BI.

The Run-Time Options are used to specify input from the paper tape

reader or the

card reader. The Run-Time Options and their meanings

are listed in Table 6-1.

Table 6-1
Run-Time Options

Option

Meaning

/C

/E

/P
/Q

/T

/H

/U

Read the input file from the card reader (CR8/1 or
CR8/E) .

Treat 0S/8 Keyboard Monitor and 0S/8 Command Decoder
errors as nonfatal errors. If /E is not specified,
0S/8 Keyboard Monitor and 0S/8 Command Decoder errors
cause the current job to be aborted.

Read the input file from the paper tape reader.

Do not output a BATCH log. $JOB and $MSG are the
only line output to the terminal.

Output the BATCH log to the terminal. You need only
specify this option when a line printer is available.
If a line printer is not available, the BATCH log is
automatically output to the terminal.

Process the batch input file without echoing and
without sending the $JOB and SEND batch monitor
commands to either terminal or BATCH log.

BATCH will not pause for operator response to $MSG
lines. Any attempt to use TTY:, PTR:, or CDR: as
input devices to the Command Decoder in an unattended
BATCH stream will cause the current job to be
aborted.

s

(continued on next page)

6-3

BATCH

Table 6-1 (Cont.)
Run-Time Options

Option Meaning
/v Print the version number of O0S/8 BATCH on the
terminal.
/6 Accept card input in DEC 026 format. This option is

used only when the /C option is specified. The
default card input format is DEC 029.

NOTE

When running BATCH, do not move the
input file. In particular, do not
SQUISH the device containing the BATCH
input file. Moving the input file while
BATCH is running produces unpredictable
results. If you must SQUISH SYS under
BATCH, place the BATCH input file at the
beginning of SYS so it will not move.

In addition, avoid moving SYS:BATCH.SV
while BATCH is running.

6.3 BATCH MONITOR COMMANDS

A BATCH command is a character or string of characters that begins
with the first character of a record in the BATCH input file. If the
input file is a disk, DECtape or paper tape file, each BATCH command
must be followed by a carriage return/line feed combination. If the
input file is a punched card file, each command must begin in the
first column of a punched card. Disk and paper tape files may contain
form feed characters. Form feed characters are ignored by BATCH on
input.

0S/8 BATCH recognizes four monitor 1level commands. These commands
allow routine housekeeping operations in a multi-job, batch processing
environment and provide communication between the BATCH programmer and
the computer operator. Table 6-2 lists the BATCH monitor commands,
which may be considered as an extension of the 0S/8 Keyboard Monitor
command set. Note that the first character of the $JOB, $MSG, and
SEND commands is a dollar sign. The BATCH monitor does not recognize
the ALTMODE character.

In the current version, any record that begins with a dollar sign
character but is not one of the BATCH monitor commands listed in Table
6-2 is copied onto the output file and ignored by BATCH.

6.3.1 Defining a BATCH Job

A BATCH processing job consists of a $JOB command record and all the
commands that follow it up to the next $JOB or S$SEND record. Normally,
all the commands submitted by one user are processed as a single job,
and all output from these commands appears under one job header.

BATCH

Table 6-2
BATCH Monitor Commands

Command Meaning

$JOB Initialize for a new job and print a 3job header on
the output file. The remainder of the $JOB record is
included in the job header but is ignored by BATCH.
It should be used for identifying jobs, and
correlating output from the teletype, line printer,
and spool device.

$SMSG Ring the terminal bell and print an image of the
record at the teleprinter. If you do not specify the
/U option, implying that an operator is present,
BATCH pauses until any key is struck at the keyboard.
If you do specify the /U option, processing continues
uninterrupted.

SEND Terminate batch processing and exit to the 0S/8
Keyboard Monitor. A S$SEND command record should be
the last record of every BATCH input file.

/ Copy the record onto the output file, then ignore it.
BATCH assumes that every record beginning with a
slash is a comment.

After BATCH encounters a $JOB command, it scans the input file until
it finds a Keyboard Monitor command. Any records that follow the $JOB
command and precede the first Keyboard Monitor command are written
onto the output file and ignored by BATCH.

NOTE

To abort a BATCH job or a sequence of
jobs, use the console HALT switch and
manually branch to location 7000 in the
highest field. This causes BATCH to
scan its input for the next $JOB
command.

6.3.2 Using 0S/8 Reyboard Commands

The first character of every Keyboard Monitor command record is a dot
(.). The rest of the record contains an 0S/8 Keyboard Monitor
command, which should appear in standard 0S/8 format. However,
commands that would be terminated with an ALTMODE under interactive
0S/8 should be terminated with a dollar sign under BATCH. Every
standard 0S/8 Keyboard Monitor command is legal input to BATCH;
however, the ODT command will go to the terminal for input instead of
to the BATCH file. Typing CTRL/C to ODT will terminate BATCH. Type
7600G to ODT to resume the BATCH run.

BATCH executes a Keyboard Monitor command by stripping off the initial
dot character and loading the remainder of the record into the
Keyboard Monitor buffer. BATCH then passes control to the Keyboard
Monitor, which executes the command as though it had been typed at the
keyboard.

BATCH

Keyboard Monitor commands that return control to the monitor level
should be followed by a BATCH monitor command or another Keyboard
Monitor command. Keyboard Monitor commands that transfer control to
the program 1level should be followed by a Command Decoder file
specificationwhenever the running program calls the Command Decoder.
All 0S8/8 V3 CCL commands are legal under BATCH, including the SUBMIT
command (which can be used to chain from one BATCH stream to another).

6.3.3 Using the Command Decoder

When a running program calls the Command Decoder, the Command Decoder
determines whether batch processing is in progress and, 1if so,
instructs BATCH to read the next record of the BATCH input file.
BATCH expects this record to contain a Command Decoder file
specification.

The first character of every Command Decoder file specification record
is an asterisk (*). The rest of the record contains an 0S/8 Command
Decoder file (and/or option) specification, which should appear in
standard O0S/8 format. As with BATCH monitor commands and Keyboard
Monitor commands, any Command Decoder specification that would be
terminated with an ALTMODE under interactive 0S/8 should be terminated
with a dollar sign under BATCH.

BATCH executes a Command Decoder file specification by stripping off
the initial asterisk character and loading the remainder of the record
into the Command Decoder buffer. BATCH then passes control to the
Command Decoder, which decodes the file specification as though it had
been typed at the keyboard and returns control to the running program.

6.3.4 Additional Features

If BATCH reads a record from the input file, expecting to find a
Command Decoder file specification, and finds a Keyboard Monitor
command instead, BATCH returns control to the monitor 1level by
recalling the Keyboard Monitor to execute the command. The running
program is thus terminated; control remains at the monitor level. If
BATCH encounters a BATCH monitor command when it expects to find a
Command Decoder specification, it executes the BATCH monitor command
and continues processing the input file. As long as a Command Decoder
file specification is read before the next Keyboard Monitor command,
control will eventually return to the running program, and the file
specification will be executed.

A BATCH monitor command is legal at any level of command execution,
and the BATCH monitor returns control to the level from which it was
entered. Keyboard Monitor commands are also legal at any level (under
BATCH, but not under interactive 0S/8); however, the Keyboard Monitor
terminates any program that may be running when it is called and
returns control to the monitor level.

The computer operator may type CTRL/C at any time during a batch
processing run. Typing CTRL/C at the program level causes an
effective jump to location 07600, which recalls the BATCH monitor.
The BATCH monitor then recognizes the CTRL/C and terminates the BATCH
run.

BATCH

6.4 THE BATCH INPUT FILE

Figure 6-1 shows a listing of a BATCH input file. This 1listing
represents the output that you obtain by using PIP to transfer the
BATCH input file from disk to the console terminal. Assume that 0S/8
BATCH is 1loaded on a 12K system containing one TU56 dual DECtape
transport, a line printer, a Teletype terminal, and a disk as the
system device. If you specify the disk file shown in Figure 6-1 as an
input file, BATCH will begin processing by printing a job header and
executing the DATE command.

$JOB 05/8 BATCH FROCESSING EXAMFLE #1
+DATE 3/5/74

+R FIF

/LIST SYSTEM DEVICE DIRECTORY ON TELETYFE
XTTYSYSI/F

/NOW LIST THE DIRECTORY OF DECTAFE #3 ON THE LFT
$MSG MOUNT TAFE #3 ON UNIT 1
XLFT:-DTAL1:/L

/NOW TRANSFER FORTRAN SOURCE FROGRAM
/FROM DISK TO DECTAFE #3 (UNIT 1)

$MSG WRITE ENARLE UNIT 1

XDTALIFORTSL.FT TISKIFORTS1.FT

/COMFILE FORTRAN SOURCE

+R FORT
XDTALIFORTS1.RLyFORTS1.LS"FORTS1.FT
/THAT CONCLUDES JOR #1

$JOR 05/8 RATCH FROCESSING EXAMFLE #2
$MSG MOUNT TAFE #2 ON UNIT 1» WRITE ENABLED
«R FALS

XFTF:»DTALIFROG.L S DTALFROG.FA

+RUN DSK CREF

¥ODTALIFROG.LS

/7END OF EXAMFLE #2 AND END OF INFUT FILE
SEND

Figure 6-1 Sample BATCH Input File

Control remains at the monitor 1level, so BATCH executes the next
command by calling and starting the Peripheral Interchange Program.
PIP, in turn, calls the Command Decoder, which accepts and decodes the
file/option specification that occupies the next executable record
(following the comment) of the input file. The Command Decoder passes
control to the program level, and PIP lists the short form of the
system disk directory at the terminal.

If spooling is active, BATCH intercepts this output and stores it in a
temporary file on the spool device. Assuming that DTAO0 is the spool
device and that this listing is the first nonfile-structured output
file intercepted by BATCH, the output is stored in a file named
BTCHAl. BATCH then prints the message:

#5000 TO FTILF RBTCHAL

BATCH

on both the console terminal and the 1line printer. The next file
rerouted to the spool device 1is assigned the file name BTCHA2;
successive files are named:

BTCHA3
BTCHA4

*

*

BTCHA?
RTCHERO
BTCHE1

*

3

BTCHZ?

allowing a total of 260 spool device files, which is more than
adequate in view of the maximum size of the 0S/8 file directory (about
240 entries). 1If output to a spool device file is generated by a
program that appends a default extension to output file names, the
spool device file is assigned a standard default extension. You may
then transfer all the spool device files to the terminal or line
printer by using the program FOTP, with the input file specification
dev:BTCH??.*,

Returning to the example of Figure 6-1, PIP executes the file
specification that appears in the fifth record of the input file and
recalls the Command Decoder.

The Command Decoder then instructs BATCH to scan the input file for
the next file specification record. BATCH processes the comment
record by copying it onto the line printer, then processes the $MSG
command by ringing the terminal bell, copying the $MSG record onto the
terminal, and, assuming that an operator is present, pausing until any
key is typed at the terminal.

Once the operator has resumed processing by typing any character,
BATCH reads the eighth record 1n the file, recognizes it as a Command
Decoder specification record, and transfers control back to the
Command Decoder.

Processing continues in this manner until the third Command Decoder
specification record 1is read. When BATCH searches for the next file
specification record, it reads and executes the 1last $MSG command,
then encounters a Keyboard Monitor command. BATCH passes this command
to the Keyboard Monitor, which terminates PIP and calls the FORTRAN
compiler to 1load and compile source program FORTSl. Upon completion
of these operations, FORTRAN routes its output to the specified files
and returns control to the monitor level. BATCH then encounters the
second $JOB record, causing it to terminate the current job and print
a new header.

The second job calls PALB to assemble a source program from disk. The
output listing is directed to DECtape #2, mounted on unit 1, while the
binary output file is dumped onto high-speed paper tape. The job
concludes by running CREF to produce a cross-referenced listing of the
assembled program.

BATCH

This job illustrates how you may use O0S/8 BATCH to execute
multiprogram utility routines. If user #2 is a programmer who usually
follows a PAL8 assembly by running CREF, job #2 could be a utility
routine that combines the call to PAL8, the call to CREF, and both
file specifications into a single software package that you may run
under batch processing or in an interactive environment.

The SEND record that appears as the last record in Figure 6-1 serves
as a signal that batch processing has concluded; it causes BATCH to
recall the Keyboard Monitor and reestablish interactive processing
under 0S/8. This command is always the last record of the BATCH input
file.

6.5 BATCH ERROR MESSAGES

BATCH generates two types of error messages. The first type is a
run—-time error message that appears in the form:

#BATCH ERR

The second type of error message is generated when the Keyboard
Monitor or the Command Decoder recognizes a command error in the BATCH
input file. When this occurs, either the Keyboard Monitor or the
Command Decoder transmits a standard 0S/8 error message, and BATCH
will append a "#" character to the beginning of the message, so that
it appears in the form:

#SYSTEM ERROR

Any occurrence of a Keyboard Monitor or Command Decoder error normally
causes BATCH to abort the current job and scan the input file for the
next $JOB command. If the /E option was specified, BATCH treats
Keyboard Monitor and Command Decoder errors as nonfatal and continues
the BATCH run.

Table 6-3 lists the BATCH error messages, their meanings, and the
probable cause for the error.

Table 6-3
BATCH Error Messages

Message Meaning

$#MONITOR OVERLAYED The Command Decoder attempted to call
the BATCH monitor to accept and
transmit a file specification, but
found that a user program had
overlayed part or all of the BATCH
monitor. Control returns to the
monitor level, and BATCH executes the
next Keyboard Monitor command.

#BAD LINE. JOB ABORTED The BATCH monitor detected a record
in the input file that did not have
one of the characters dot, slash,
dollar sign, or asterisk as the
first character of the record. The
record is ignored, and BATCH scans
the input file for the next $JOB

_record.

(continued on next page)

6-9

BATCH

Table 6-3 (Cont.)
BATCH Error Messages

Message

i .

e e e N _ e

Meaning

#SPOOL TO FILE BTCHAl

$#MANUAL HELP NEEDED

$ILLEGAL INPUT

$INPUT FAILURE

#5YS ERROR

INSUFFICIENT CORE FOR
BATCH RUN

BATCH.SV NOT FOUND ON
SYS:

(Where the "A" may be any character of
the alphabet and the "1" may be any
decimal digit.) BATCH has intercepted
a nonfile-structured output file and
rerouted it to the spool device. This
is not, generally, an error condition.
Spool device file names are assigned
sequentially, beginning with file
BTCHAl. Standard default extensions
may be assigned by some system
programs.

BATCH is attempting to operate an I1I/0
device, such as PTR or TTY, that will
require operator intervention. If the
initial dialogue indicated that an
operator is not present, this message
is suppressed, the current job is
aborted, and BATCH scans the input
file for the next $JOB command record.
If an operator is present, he should
have been notified what action to take
by a $MSG command.

A file specification has designated
TTY or PTR as an input device although
the initial dialogue indicates that an
operator is not available. The
current Jjob 1is aborted, and BATCH
scans the input file for the next $JOB
command record.

Either a hardware problem prevented
BATCH from reading the next record of
the input file, or BATCH read the last
record of the input file without
encountering a $END command record.
If a hardware problem exists, correct
the problem and type any character at
the Teletype to resume processing.

A hardware problem prevented BATCH
from performing an I/0 operation.
Program execution halts, and the
system must be restarted manually.
This message often indicates that the
system device is not write-enabled.

05/8 BATCH reguires 12K of core to
run, Control returns to the 0§5/8
Monitor.

A copy of BATCH.SV must exist on the
system device. Control returns to the
0S/8 Monitor.

(continued on next page)

BATCH

Table 6-3 (Cont.)
BATCH Error Messages

Message Meaning

WRONG 0S/8 MONITOR 0S/8 BATCH requires an 0S/8 Monitor no
older than version 3.

DEV NOT IMPLEMENTED BATCH cannot accept input from the
specified input device because its
handler is not permanently resident

(SYS: or coresident with §SY¥S:).
Control returns to the Command
Decoder.

ILLEGAL SPOOL DEVICE The device specified as a spooling

output device must be file structured.
Control returns to the Command
Decoder.

6.6 RUNNING BATCH FROM PUNCHED CARDS

The carriage'return and ALTMODE characters are not defined in the
punched card charactér set. BATCH allows you to omit terminating
carriage return characters from punched card input files. Thus, when
BATCH reads a punched card input file, it appends a carriage return to
the content of each card, immediately following the last character on
the card that is not a space character. As with disk, DECtape or
paper tape input files, BATCH considers the dollar sign character to
be equivalent to an ALTMODE when it appears on a punched card in any
column except the first.

When you run BATCH with a punched card input file, it is possible to
embed your input files in the BATCH input file. You should insert
your input files into the BATCH input file in such a way that BATCH
will never attempt to read a record of the files. That is, your files
should follow a command record that transfers control to the program
level, and the running program must exhaust all records of your file
before returning to the monitor level.

Figure 6-2 illustrates how you may modify the second sample Jjob of
Figure 6-1 to run from a punched card input file with an embedded user
file. In this example, PAL8 reads the punched card user file and
assembles the source program, then returns control to the monitor
level. BATCH reads the next card of the input file, which should
contain the .R CREF command. If PAL8 has not read every record of the
user input file, however, BATCH will encounter a record from this file
rather than the Keyboard Monitor command record. This results in the
message:

$BAD LINE. JOR _ARORTED

and causes BATCH to scan the input file for the next $JOB record.

BATCH

ﬁEND

/END OF EXAMPLE #2

EMBEDDED / DTA1-PROG LS
USER FILZFUN DSK CREF

ﬁTP:,DTm PROG.LS CDR- ” —

/ .R PALS !
$MSG MOUNT TAPE #2 ON UNIT 1 i
$JOB 0S/8 BATCH PROV Liv,I1iG EXAMPLE #2 _|J- J

T —

Figure 6-2 Punched Card Input File

6.7 RESTRICTIONS UNDER 0S/8 BATCH

05/8 BATCH is a "friendly" system; that 1is, one that is largely
unprotected from user errors. The BATCH monitor resides in locations
5000 to 7577 in the highest memory field available. BATCH also uses
the following locations in field 0 and the memory field in which it
resides:

Location Used as:
07777 Batch processing flag
N7774-N7777 Internal pointers

Both the Keyboard Monitor and the Command Decoder check the batch
processing flag whenever they are entered from the program level. Any
user program that modifies location 07777 may cause batch processing
to be terminated prematurely before the next record of the BATCH input
file is read.

When the Keyboard Monitor is entered from the program level (effective
JMP to 07600 or 07605), it checks the batch processing flag and reads
a new copy of the BATCH monitor into core if batch processing is in
progress. The Command Decoder, however, does NOT perform this
operation. Thus, the Command Decoder must not be called unless the
BATCH monitor is already in core.

This means that you may load large programs over the BATCH monitor as
long as they do not modify the last four locations in the highest
memory field; however, once a user core load has overwritten the
BATCH monitor, execution must remain at the program level until the
Keyboard Monitor has been reentered and a new copy of the BATCH
monitor 1is read into core. You must not call the Command Decoder
after you have loaded your program over the BATCH monitor.

6-12

BATCH

In general, this restriction applies only to loader programs and only
when the 1loader <calls the Command Decoder more than once while
building a large core load. You can avoid multiple calls to the
Command Decoder when loading large programs during batch processing if
you first build the core load in a stand-alone environment and then
save it for subsequent execution under BATCH.

In conjunction with this, note that it is impossible to save the core
image of any program that overlays the BATCH monitor under BATCH.
After the load operation but before the save is executed, the BATCH
monitor 1is read back into core, destroying part of the user program:
Thus, the Keyboard Monitor SAVE operation causes part of the BATCH
monitor to be saved instead of that part of the user program that
originally overlayed the BATCH monitor.

6.8 BATCH DEMONSTRATION PROGRAM

The following listing was produced by running BATCH on a 12K PDP-8/E
system containing a disk, DECtape and a line printer. Only the
Teletype output is reproduced here, and page breaks were inserted
arbitrarily to divide the listing into convenient segments. The same
BATCH input file has been processed twice, with two different system
configurations.

Notice that the first BATCH processing run begins by listing the BATCH
input file, and that the three demonstration programs are listed
shortly thereafter.

+R BATCH

XSYSIDEMO/U

$JOR 05/8 BRATCH DEMO

$MSG BEGIN BY LISTING BATCH INFUT FILE ON TERMINAL?
+R FPIF

XTTY:<DEMO.RI

+OATA 3/5/74

$MSG SYSTEM DEVICE ASSIGNED LOGICAL NAME "IN
+ASSIGN SYS 1IN

$MSG MOUNT SCRATCH DECTAFPE ON UNIT 1
+R FIF

/ZERO DECTAFE DIRECTORY

$MSG WRITE ENAEBLE UNIT 1

*¥DTAl: /2

/LIST SYSTEM DIRECTORY ON LINE FRINTER
XLFT: . IN:/E

/TRANSFER DI'EMO FROGRAMS TO DECTAFE
X[TAL:DEMOL.FA- DEMOL1.FA
XDTALIDEMO2.FT:-DEMO2.FT
XITALIDEMO3.FT-.DEMO3.FT

/LIST THE FIRST DNEMO FROGRAM

¥TTY: INDNEMO1.FA/T

/LTST THE SECONDI DEMO FROGRAM

XTTY:! INIDEMO2.FT/T

/LIST THE THIRD DEMO PROGRAM
XTTY?: . INIDEMO3.FT/T

/ASSEMELE DEMO1.PA

+R FALSB

XINIDEMOL .BNyDEMO1.LS [INIDEMO1.FA
/FRINT CROSS REFERENCE LISTING

+R CREF

XLFT: INI{DEMO1.LS

7L0ADL ASSEMEBLEDN BINARY INTO CORE

BATCH

+R ABRLSDR

XDEMO1 . EN$

/RUN FIRST DEMO FROGRAM

+«START 200

/NOW SAVE CORE IMAGE OF DEMO1.FA» BUT MUST
/RELOAD FIRSTy SINCE DEMO1 IS SELF-MODIFYING
+R ABSLDR

XINIDEMO1 . BN$

+SAVE SYS DEMO1 0,200

/RUN DEMO1.SV TO BE SURE THAT IT WAS SAVED CORRECTLY
+RUN SYS DEMO1

/NOW COMFILE FORTRAN MAINLINE FROGRAM

+R FORT

XINIDEMO2.BNsLFPTI<INIDEMO2.FTS$

/COMFILE FORTRAN FUNCTION ROUTINE

+R FORT

XIN!DEMO3.BNsLFT:<IN!DEMO3,FT$
/TRANSFER BOTH BINARY FILES TO DECTAPE
+R FIP

XDTA1:DEMO2 . ENDEMO2,BN/E

XDTAL1 ! DEMO3, BN<DEMO3.BN/E

/L.0AD ANI' EXECUTE FORTRAN FACKAGE

+R LOADER

XDEMO2. BNy DEMO3 . BN/G

/RENAME DEMO3.BN FOR FUTURE REFERENCE

+R FIF

XFACT<DEMO3.BEN/I

XDEMO3 . EN<D

/6D0 FORTRAN FUNCTION TO FORTRAN LIERARY
+R LIBSET

XLIES8.EN/S

XFACTS

/FINALLYs DELETE TEMFORARY FILE °*FACT®
+R FPIP

XFACT-/D

/NOW CLEAN UF DISK AREA

X¥DEMO1 . ENy DEMO1 .SV DEMO2. BN<D

$MSG DEVICE NAMES DEASSIGNED

+DEASSIGN

$END

$MSG SYSTEM DEVICE ASSIGNED LOGICAL NAME "IN
$MSG MOUNT SCRATCH DECTAPE ON UNIT 1

$MSG WRITE ENARLE UNIT 1

*10

IR1y 300

%200

STARTy CLA CLL
TLS
TAI I IR1
JMS TYFE
JMS TEST
JHMP -4

BATCH

TYFE» 0
TSF
JMF -1
TLS
CLA
JMF I TYFE
TESTy 0
TAD IR1
TAD M335
SZA CLA
JMF I TEST
TSF
JMF -1
JMF 7600
M335, -335
%301
215521252125241524152415 305533033055 303
3255324531153175316§240530333175 3155320
3145305+32453055241524152415215;2125212

c FORTRAN DEMONSTRATION FROGRAM
DIMENSION A(35)
0 10 N=2,34,52
ACNY=FACT (N>
10 WRITE (1s60)NsA(N}
STOF
69 FORMAT (13y ‘! = “5yE14.7)
END

C FORTRAN FUNCTION TO COMFUTE FACTORIALS
FUNCTION FACT(N)
IF (N-34) 1+s5,5
IF (N) 2.4,2
M=N-2
FACT=N
D0 3 h=1-M
C=N-h
3 FACT=FACTXC
RETURN
4 FACT=1,
RETURN
5 WRITE (1+6) N
FACT=0,
RETURN
) FORMAT (15,71 EXCEEDS CAPACITY OF FROGRAM.’)
END

13 —

'PTEXECUTION COMPLETE! '

PHIEXECUTION COMPLETE! !

21
41
&)
g1
10!
121
141
161
18!

0.2000000E+01
0.2400000E+02
0.7200000E+03
0.4032000E+05
0.3628800E+07
0.47920016E+09
0.8717829E+11

+2092279E+14
0.6402374E+16

[AT 1 O TR N | O

BATCH

20t
221
241
26!
281
301
321

0.2432902E+19
0.1124001E422
0.6204484E+24
0.4032915E4+27
0.3048883E+30
0.2652529E+33
0.2631308E+36
‘34! EXCEEDS CAFPACITY OF FROGRAM.
34t 0.0000000E+00
$M5G DEVICE NAMES DEASSIGNED

Hnou

END BATCH

The next run is initiated via the SUBMIT command.

+SUBMIT SYS:<SYS!DEMO/U/T
$J0R 05/8 BATCH DEMO

$MSG BEGIN BY LISTING BATCH INPUT FILE ON TELETYFE:
R PIF
XTTY:<DEMO.BI

SFOOL. TO FILE RBRTCHAL

+DATE 8/3/72

#MSG SYSTEM DEVICE ASSIGNED LOGICAL NAME "IN®
+ASSIGN SYS 1IN

$MS5G MOUNT SCRATCH DECTAFE ON UNIT 1
+R FIF

/ZERO DECTAFE DIRECTORY

$MSG WRITE ENARLE UNIT 1

XDTAL:</2Z

/LIST SYSTEM DIRECTORY ON LINE FRINTER
XLFT-JINS/E

SFOOL TO FILE BTCHAZ2

/TRANSFER DEMO FROGRAMS TO DECTAFE
*[TAL1:DEMOL.FA-"DEMOL ., FA
XOTALDEMO2.FT-HEMO2.FT
x[TALIDEMO3.FT-"DEMO3.FT
/LLIST FIRST DEMO FROGRAM
XTTY - TINIDEMOL.FA/T

SFO0OL TO FILE BTCHA3
ZLLIST SECOND DEMO PROGRAM
XTTY < INIDEMO2.FT/T

SFOOL TO FILE EBTCHA4
/LIST THIRD DEMO FROGRAM
*¥TTY I~ INSDEMO3.FT/T

SFCOL TO FILE BTCHAS

/ASSEMELE DEMO1.FA

+R FALS

xINIDEMOL1.EBNDEMO1.1.5 INI!DEMO1.FA
YPRINT CROSS REFERENCE LISTING

<R CREF

XLFT! "INIDEMOL . LS

BATCH

XSFOOL TO FILE RTCHAS

/LOADI' ASSEMBLED BRINARY INTO CORE
+R ABSLIR

XDEMO1 . BN$

/RUN FIRST DEMO PROGRAM

+START 200

HTEXECUTION COMPLETE! !

/NOW SAVE CORE IMAGE OF DEMO1.PA» BUT MUST

/RELOAD FIRST, SINCE DEMO1 IS SELF-MODIFYING

+R ABRSLDR

XINIDEMOL . BN$

+SAVE SYS DEMO1 0,200

/RUN DEMO1.SV TO ENSURE THAT IT WAS SAVED CORRECTLY
+RUN SYS DEMO1

VWIEXECUTION COMPLETE!!!

/NOW COMFILE FORTRAN MAINLINE PROGRAM
+R FORT

XINIDEMO2.BNsLPT: INIDEMO2.FTS$

SFOOL TO FILE RTCHA?

/COMFILE FORTRAN FUNCTION ROUTINE

+R FORT

XIN!DEMO3.RNsLPT?: INIDEMO3.FT$

SFOOL TO FILE BTCHAS8
/TRANSFER BOTH BRINARY FILES TO DECTAPE
+R FIF

*DTALIDEMO2 . BN<DEMO2.BN/B
X0TA1{DEMO3 . EN<DEMO3.BN/B
/LDAD AND EXECUTE FORTRAN PACKAGE

+R LOADER
XODEMO2 . BNy DEMO3 . BN/G
2t = 0.,2000000E+01
41 = 0.2400000E+02
6! = 0.,7200000E+03
8t = 0.4032000E+05
10t = 0.3628800E+07
12' = 0.4790016E+09
14! = 0.8717829E+11
160 = 0.2092279E+14
18! = 0.6402374E+16
201 = 0,2432902E+19
220 = 0.1124001E+22
241 = 0,6204484E+24
26" = 0.4032915E+27
28" = 0.3048883E+30
301 = 0.2692529E+33
32V = 0,2631308E+36
34! EXCEEDS CAFACITY OF FROGRAM.
34t = 0,0000000E+00
/RENAME DEMO3.EN FOR FUTURE REFERENCE
+R PIP

¥FACT-DEMO3.EBN/T

¥DEMO3.EBN-"/D

/AND FORTRAN FUNCTION TO FORTRAN LIERARY
+R LIBSET

*¥LIEB.BN/S

¥FACTS

/FINALLYs DELETE TEMFORARY FILE °*FACT*

BATCH

+R FIF

¥FACT /D

/NOW CLEAN UP LISK AREA

XDEMO1 . BNy DEMO1 .5V, DEMO2 . EN</T
$MS6 DEVICE NAMES DEASSIGNED

. DEASSIGN

$END

$END RBRATCH

6.9 LOADING AND SAVING BATCH

You may load and save the paper tape binary version of Os/é BATCH on
the 0S/8 system device by typing the following commands in response to
the prompt signs generated by the 0S/8 monitor:

4R ABSLDK
XFTR: (9F)$"
ZSAVE SYS EATCH

Once the ALTMODE ($) has been entered, the system will print an
uparrow and pause. Load the binary paper tape into the high-speed
reader, turn the reader on, and type any character at the keyboard to
continue.

6.10 LOADING AND SAVING PROGRAMS FOR USE UNDER BATCH

A program that never uses more than 8K of core can never destroy the
BATCH monitor. When you are loading this sort of program from a
DECtape system, you can save considerable time through the use of the
/P option.

The /P option is a new ABSLDR option designed for use under 0S/8
BATCH. It causes the 400 bit of the job status word (location 07746)
to be set and prevents the Keyboard Monitor from reading a fresh
version of the BATCH monitor into core every time the monitor level is
reentered from the program level.

For example, 0S/8 PIP never uses more than 8K of core. Thus, the best
method of loading PIP would be:

+R ABSLDR
XFTRS (89F)=13000%

D

The /P option is not really necessary on a disk system, because very
little time 1is required to refresh the BATCH monitor from disk. You
should not use the /P option with any program that occupies or
modifies core above field 1.

BATCH

6.11 TRANSFERRING THE SYSTEM SOFTWARE FROM CASSETTE TO THE SYSTEM DEVICE

The following BATCH file can be wused to transfer the O0S/8 System

Software from cassette to the system device.

$JOR JOR TO LOAD SYSTEM CASSETTE #2 TO SYSTEM DEVICE

+R MCFIF

¥SY3:CCL.SV- CSAOICCL .SV
XSYSI!NIRECT.SV-CSAOtDIRECT.SV
XSYSIFOTF.SV-'CSAOIFOTF.SV
*SYSIFIF.SV CSAOIPIF.SV
XSYSILIRB.RL--CSAOILIEB8.RL
ASYSIEDTIT.SV: CSAQLEDIT.SV
*SYSiFALB.SV. CSAOIFALSB.SV
XSYS!ICREF .SV CSAOICREF .SV
XSYSIRITHAR .SV CSAOIBRITMAF .GV
*¥SYSIROOT.SV- CSAQIROOT.GV
¥KS5YSICAMP, 8Y- CSAOICAMF .GV
XSYS IRKBFEMT . SV CSAOIRKBFMT .SV
*¥SYSIRMEFMT . SV CSAO IRKEFMT. SV

HEND

$.JOR JOR TO LOAD

+R MCFIP

XSYSIFORT.SV-.CSALIFORT .SV
XSYS5:SABR.SV-"CSA1ISAEBR .SV

X8SYSILOADER .SV

XSYSISRCCOM. SV

CSA1:LOADER.SV
CSA17SRCCOM. SV

XSYSIEFIC.SVICSALIEPIC.SV
¥SYSIFIF10,.8V.CSALIPIF10.8V

XSYSIRESORC .5V
XSYSIDTCOFY.SV

X8YS:THCOPY . 5V
XSYSITOFRMT .SV
XSYSIOTFRMT.SY-

$ENT

$.J0OR
+R MCFTF

XSYSLTCOESY BN
XSYS I TNGESY . BN

ASYSILINCSY. BN-

XSYSINF328Y . BN

XSYSIRABESY BN

¥SYSITCOBNS ., RN

XS5YSIRNGENS BN

JOR TO LLOAD

CSA1IRESORC, SV

‘CSA1INTCOFY.SV
"CSAL1ITOCOFY .SV

CSAL1:TOFRMT .SV

‘CSALIDTFRMT .SV

CSADITCOBSY . BN
CSAOITRBESY « BN
CSAOILINCSY.EN

.CSAO:DF32SY . BN
XSYSIRFOBSY . EN-.
XSYSIRROBSY . RN
<CSAOIRRBESY . EN
XSYSIROMMSY . BN
*SYS L INCNS BN

CSAOIRFO8SY .EN
CSADIRROBSY BN

CSAOIROMMSY . BN
CSAOILINCNS..EN

CSAOITCOBNS BN
CSAOIRRBENS . BN

XSYSIFTBE «BN- CSAOIFTBE « BN
XSYSILSPT.BN<CSAOILSFT . BN
XGYSILA45,.BN-CSAN0ILSAG . BN
*SYSLASR3T BN CSA0LASR33 . BN

XSYSIRAOBNS , BN -

CSAOIRROBNS . BN

SYSTEM #4 T0

SYSTEM CASSETTE #3 TO SYSTEM DEVICE

SYSTEM DEVICE

BATCH

*XSYSI!CRBE .BNCSAO{CRBE .EN
*SYSIRAT . BN<CSAO {BAT . BN
XSYSITDBEA . BN<CSAO{TNSEA.BN
*XSYS!TDSER. BN<CSAO ! TIOSER.BN
XSYSITDBEC . BN<CSAO:TDSEC . EN
XSYSITDBED.BN<CSAO: TOSED . BN
XSYSIVR12,ENZCSAOIVR1I2 BN
XSYSIRFOBNS. EN<CSAO :RFOSBNS, EN
XSYSIDF32NS, BN-.CSAO : IIF 32NS . BN
*XSYSIKLBE.BN<CSAO{KLBE . EN
XSYSILFSV.BN<CSAQILFSV,.EN
XSYS:TMBE . BN CSAO I TMBE.EN
X8YS:CSA.BN<CSAOCSALEN
XSYS:CSE.BN<CSAOICSE.BN
XSYSICSC.BN-ICSAO:CSC.BN
XSYSICSD.BN<CSAOICSD.BN
XSYSIDIRECT .HL<CSAO!DIRECT.HL
XSYSIBATCH.HL<CSAOIRBATCH.HL
*8YS:SABRHL<CSAOISARR . HL
XSYSIFIP.HL<CSAOIFPIF.HL
*XSYSIFOTP.HL-CSAO{FOTP..HL
XSYSIABSLIOR. HL<CSAO {ABSLIDR .. HL
XSYSIPIP10.HL<CSAOIFPIP10.HL
XSYS!ROOT «HL<CSAO0:ROOT , HL
*SYS!LOADER . HL<CSAOL.OADER. HL
XSYSIBITMAF + HL-CSAO{BITMAF . HL
XSYSIEDIT HLCSAOIEDIT.HL
XSYSICREF . HL<CSAQ ! CREF . HL
XSYS!RUILD.HL-CSAO!BUILD,HL
XSYSIFALB.HL<CSAO{FALS. . HL
XSYSIONT.HL<CSAOIODT . HL

XSYS I SRCCOM +HL<CSAO ! SRCCOM . HL.
XSYSICCL+HL<CSAOICCL . HL
XSYS!TECOHL-CSAOITECO.HL.
XSYSIFORT.HL<CSAQO:FORT . HL
XSYSLOAD.HL<CSAOIL.O.HL
X*SYS:LIBRALHLECSAO:LIBRA, HL
XSYSIEFIC.HL<CSAOIEFIC. . HL
$SEND

$JOE JOR TO LOAD SYSTEM CASSETTE #5 TO SYSTEM DEVICE
+R MCFIF
XSYSILIES,.RLCSAL:LIBS.RL
XSYS{GENIOX.RL-CSA1IGENIOX.RL
*SYS:IOH.RL<CSA1:TOH.RL
XSYSIFLOAT.RL<ZCSA1{FLOAT.RL
XSYS!INTEGR.RL-CSA1: INTEGR.RL
XSYSIUTILTY.RL-CSALSUTILTY.RL
XSYSIFOWERS.RL-"CSAL1 :POWERS.RL
XSYS ! IFPOWRS.RL.<CSA1:IPOWRS . RL
XSYSISART .RL-CSA1!SART.RL
X¥SYSITRIG.RL<CSA1:TRIG.RL
X¥SYS!IATAN.RL-CSA1!ATAN.RL
XSYSIRWTAFE .RL<CSA1 !RWTAPE «RL.
XSYSITOFEN.RL<CSA1 ! TOPEN.RL
XSYSILIRSET.SVCSAL:LLIBSET.SV
X¥SYSIKLBE . .FA-CSAL1!KLBE.FA
SEND

BATCH

$JOR JOB TO LOAD SYSTEM CASSETTE #6 TO SYSTEM DEVICE
+R MCFIF

*¥5YS:CCL.PAZCSAOICCL .PA

$END

$JOB JOB TO LOAD 0S/8 EXTENSION CASSETTE TO SYSTEM DEVICE
+R MCPIF
*¥SYS!BATCH.S5V-CSA1 {BATCH. S5V
XSYSI{BASIC.5V<CSAL {BASIC.SV
*8YS ! BCOMF .5V CSAL1: BCOMP .SV
XSYS!BLOAD.SV-"CSA1: BLOAD, SV
XSYSIBRTS.SVCSAL{BRTS.5V
XSYSIBASIC.AF<CSA1 tBASIC.AF
¥SYS¢RASIC.SF<CSA1 :BASIC.SF
XSYSIRASIC.FF<CSAl:{RASIC.FF
*¥8YSIBASIC.UF-ICSA1 {RASIC.UF
XSYSIEAEOVR . BN« CSA1 {EAEDVR . BN
XSYS!RESEQ.BACSAl1 tRESEQ.RBA
XSYSITECO.5V-.CSAL1ITECD.5V
XSYSIMSRAT . SV-ICSA1 I MSGBAT . 5V
XSYSIGENTOX . RL<CSAL1 ¢ GENIOX.RL
$END

6.12 RUNNING FORTRAN IV UNDER BATCH IN 32K

To run FORTRAN 1V V3D under BATCH V3D causes a problem because BATCH
allows the wuse of 32K words of memory, but the FRTS loader restricts
memory to 28K. If you do not have a TD83 ROM and would 1like to run
FORTRAN IV under BATCH in 32K, install the following patch to FRTS.SV.

LGET SYS FRTS
_40[|T

127137 5326 7000
ZC

ISAVE SYS FRTS

CHAPTER 7

BITMAP

The BITMAP program constructs a table (map) showing the memory
locations used by given binary files.

BITMAP uses 8K of core to map programs using up to 16K of core, but it
requires 12K of core to map programs using more than 16K of core.

7.1 FILE AND DEVICE SPECIFICATIONS
To call BITMAP from the system device, type
+R BITMAF

The system responds by printing an asterisk (*) in the 1left margin.
Type the input line to BITMAP, specifying input devices and file name
(if input is from a mass storage device), any options desired, and an
output device and file name (if output is to a mass storage device).

The standard input devices for BITMAP are PTR, DTAn, DSK, and SYS.
Any other device can serve as an input device if a device handler
exists in the system. Do not use TTY because the binary code may
appear to the TTY handler as control characters.

BITMAP accepts only absolute binary files; you may not use
relocatable and core image files. If you do not type an extension to
the input file name, BITMAP defaults to the .BN extension. If more
than one program is present in a file, only the first program is
bitmapped. (This feature allows BITMAP to ignore any noise characters
caused by reading over the end of a paper tape.) The /S switch can
override this feature.

Type the RETURN key at the end of an input specification 1line to
signal that you wish to continue to input on the next line. When
there is no more input, use the ALT MODE key as a line terminator.
The Command Decoder is not recalled, and control returns to the
Keyboard Monitor. The last line typed specifies the output device on
which the bit map is to be produced. You may specify any legal 0S/8
output device, but if you don't specify one, output goes to the
console terminal. For example:

sk BITMAF
XDTAL!FILEL,FILE2,FILE3,FILE4
ALFT:<FTRI$"

If an output file is specified without an extension, BITMAP inserts a
.MP extension. The preceding lines cause FILEl, FILE2, FILE3, and
FILE4 from DECtape 1 to be considered. Then a file is read from the
high-speed paper tape reader. When you press the ALT MODE key, the §

BITMAP

character is printed, which indicates a return to the Keyboard
Monitor. A bit map, which combines all the files read, is produced on
the line printer.

The various options BITMAP accepts are listed in Table 7-1.

Table 7-1
Bitmap Options

Option Meaning

/R Reset internal bit map of BITMAP to 1look as though
nothing has been input.

/S Consider all binary programs in the specified input
file(s) (instead of only the first program in each
file, which is normally done).

/n Where n is an integer, forces mapping of all files
specified on this input line as if it were initially
in field n.

/T This is used to change the style of output - i.e.,
put teletype-style output on non-teletype or
non-teletype-style output on teletypes.

Consider the following examples of command lines to BITMAP:

+R EITMAP
XSYSIPROG. 01
XDTAL :MAP<DTAS:PATCH.EN

The preceding commands first create a bit map of the combined files
PROG.01 (on the system device) and PATCH.BN (on DECtape 5) and then
store the output in file MAP.MP on DECtape 1.

+R BITMAP
XLPT:<AsEsCS

This example combines three binary files (A, B, and C) on device DSK:
to produce a bit map on the line printer.

+R BITMAP
XTTY:<FTR$/S%$"

The preceding example reads a binary tape from the high-speed paper

tape reader, combines all binary files on the paper tape, and produces
a bit map of these files on the terminal.

7.2 BITMAP OUTPUT
BITMAP outputs a series of 1lines, each comprised of a string of
digits. Each digit represents a single core location and has the
value 0, 1, 2, or 3. The value is assigned as follows:

0 means that the location was not loaded into.

1 means that the location was loaded into once.

BITMAP

2 means that the location was loaded into twice.
3 means that the location was loaded into three or more times.

Occurrence of a 2 or 3 may imply a programming error (e.g., two
separate routines are trying to load values into the same location).

Each line of digits represents 100(8) core locations, and 1lines are
blocked in pairs to represent pages. On teletype output, a set of
octal coordinates that associates one core location to each digit
borders the bit map. Adding the horizontal and vertical coordinates
that lie directly to the left and above the entry determines the
corresponding core location for any given entry in the map.

7.3 BITMAP ERROR MESSAGES

After each error message, control returns to the Command Decoder. You
can repeat the procedure, or reset the program (using the /R option)
and repeat using different inputs.

Message Meaning

I/0 ERROR An I1/0 error occurred in input file number n.

FILE #n

BAD INPUT, A physical end-of-file has been reached before a
FILE #n logical end-of-file, or extraneous characters have

been found in binary file n.

BAD CHECKSUM, File number n of the input file 1list had a

FILE #n checksum error,

NO INPUT No binary file was found on the designated device.
ERROR ON Error occurred while writing on output device,
OUTPUT i.e., output error on DECtape write.

DEVICE

NO /I Cannot produce a bit map of an image file.

7.4 ASSEMBLY INSTRUCTIONS
Use PAL8 to make BITMAP.BN from BITMAP.PA as follows:

LR FALS
XDEV: RITMAF - DEV S RITMAF

Use ABSLDR to make BITMAP.SV from BITMAP.BN on a DECtape file:

<K ARSLDR
XDEVIRITHAF=12000/9%
+SAVE DEV BRITMAF

To load and save the binary paper tape (DEC-S8-0SYSB-A-PBl5):
R ABSLDR

XFTR:=12000/9%"
2SAVE DEV BITMAF

CHAPTER 8

BOOT

BOOT is an 0S/8 program that you use to bootstrap from one PDP-8
system to another and to bootstrap from one device to another by
typing commands on the keyboard. BOOT can run conveniently from 0s/8
and COS 300, and can also run from any other PDP-8 monitor system
(e.g., CAPS-8).

8.1 BOOTING WITH BOOT

To run BOOT from COS 300, see Chapter 9 in the COS 300 System
Reference Manual (DEC-08-0OCOSA-E-D).

To run BOOT from 0S/8, type:
+R BOOT/dv
or

+RUN DEV:BOOT/dv

where dv is a two-character mnemonic that must immediately follow a
slash. This mnemonic represents the device type and the system to be
bootstrapped. Do not attempt to bootstrap onto a device that is not
ready or does not exist.
To run BOOT from an 0S/8 device with CCL enabled, type:

+BOOT/dv

If you use this form of call, BOOT.SV must be present on the system
device.

If you type the following:
+R ROOT
the system responds with a slash, and you can enter the dv mnemonic.

If an illegal mnemonic is typed, the system prints:

0

£

to allow you to enter a new mnemonic. Type RUBOUT to erase the line,
then enter the correct command.

If a period follows the device mnemonic, the program loads the correct
bootstrap into core and then halts. Press CONT to branch to the
bootstrap.

BOOT

Table 8-1 lists the legal mnemonics for BOOT.

Table 8-1

BOOT Mnemonics

Mnemonic Device System or Comments
CA TAB8E cassette CAPS-8
DK Any disk (RF08, 0s/8, C0S-300
DF32, RKS8E, RKS8)

DL LINCtape DIAL-V2, DIAL-MS

DM RF08 or DF32 Disk Monitor

DT Any tape (TC08, 0s/8, COS 300

TD8E, LINCtape)

LT LINCtape 0s/8, COs 300

PT PT8E paper tape Loads BIN/loader into
field O

RE RK8E disk 0s/8, Cos 300

RF RF08, DF32 disks 0s/8, COS 300

RK RK8 disk 0S/8, COs 300

TC TC08 DECtape 0s/8, COS 300, Disk Monitor,
DEC library system,
and others

TD TDS8E DECtape 0s/8, COs 300

TY TC08 DECtape unit 4 Typeset bootstrap

VE Types BOOT's version number

ZE Zeroes core (field 0)

RX RX01 Diskette 0S/8

8.2 BOOT PRIORITIES

More than one type of device (e.g., disk, DECtape) may be present

the 0S/8 system.

following priorities:

DECt

Disk

1. RF08 or DF32 1.
2. RKSE ; 2.
3. RKS8 3.

ape

TCO8
TD8E

LINCtape

on

When you use the DK or DT mnemonic, BOOT assumes the

CHAPTER 9

BUILD

BUILD is the system generation program for 0S/8 that allows you to:
® Create an 0S/8 monitor system from cassettes or paper tapes.

® Maintain and update device handlers in an existing 0S/8
system.

® Add device handlers supplied by DIGITAL to a new or existing
system.

® Add your own device handlers to a new or existing system.

With BUILD, you use simple keyboard commands to manipulate the device
handlers that make up the 0S/8 peripheral configuration. BUILD allows
you to guickly and easily insert devices not standard on the system.

9.1 O0S/8 DEVICE HANDLERS

Each 0S/8 configuration has certain device handlers available within
BUILD when the system is supplied by DIGITAL. The handlers supplied
with BUILD depend on the distribution media of 0S/8 software, 1i.e.,
DECtape (LINCtape), cassettes, or paper tape. These device handlers
are detailed for specific distribution media in Tables 9-1, 9-2, and
9-3 (see Appendix (G) for more information).

You must activate the device handlers included with BUILD before the
0S/8 system can use them. The BUILD commands INSERT, REPLACE, and
SYSTEM activate the device handlers. A maximum of 15 handlers,
including the system device (SYS) and the default mass storage device
(DSK) , can be made active.

Inactive devices, although included with BUILD, cannot be used on the
system until they are made active by the INSERT command. Thus,
several system handlers may be supplied with BUILD, but only one may
be marked active.

All other 0S/8-supported device handlers are supplied with every
configuration. But if they are not included in the original BUILD,
you must load them into BUILD before you can use then. The BUILD
command LOAD accomplishes this. See Table 9-4 for a complete list of
the device handlers available with 0S/8.

Two names identify handlers in BUILD. The first is the group name,
assigned to an entire group of handlers of the same type. For
example, the nonsystem TC08 DECtape handler supplied with a DECtape
system, which has four separate internal handlers, has the group name
TC.

BUILD

The second name is the permanent device name. This is the name by
which 0S/8 identifies the physical device. For example, TC08 DECtape
unit 3 has the group name TC and the permanent name DTA3.

When 0S/8 software is supplied on DECtape or LINCtape, BUILD includes
the device handlers shown in Table 9-1.

Table 9-1
Standard DECtape System Device Handlers

Group Permanent
Handler Name Name (s)
TC08 DECtape system handler TCO8 SYS
TC08 nonsystem DECtape TC DTAQ-DTA3
drives 0-3
12K TD8E DECtape system TDSE SYS, DTAQ, DTAl
handler and drives 0 and 1
8K ROM TD8BE DECtape system ROM SYS, DTAO, DTAl
handler and drives 0 and 1
TD8E nonsystem DECtape TD8A DTAG, DTAl
drives 0 and 1
TD8E nonsystem DECtape TD8B DTA2, DTA3
drives 2 and 3
RK8E disk system handler RK8E SYS,RKBO
RK8E disk nonsystem handler RKO5 RKA(O, RKAl,
RKB(O, RKB1
RK8 disk system handler RK8 SYS, RKAl
RK8 disk nonsystem handler RKO1 RKA(Q, RKAl
LINCtape system handler LINC sYS
LINCtape nonsystem handler LNC LTAQ-LTA3
RF08 disk system handler RFO08 SYS
Console terminal (2-page handler) KL8E TTY
High-speed I/0 simulated on KS33 PTR, PTP
ASR-33 Teletype
High-speed reader/punch PTS8E PTR, PTP
LP08, LS8E, LV8E line printers LPSV LPT
TABE cassette drives 0 and 1 TA8A CSA(Q, Csal
PDP-12 scope VR12 vV

The handlers supplied with a DECtape or LINCtape system are on the
System Tape #2 (AL-4712C-BA). To include extra handlers in BUILD,
mount this tape and use the LOAD command.

9-2

BUILD

9.1.1 Cassette Systems
When 0S/8 software is supplied on cassettes, the device handlers shown
in Table 9-2 are included in BUILD.

Table 9-2
Standard Cassette System Device Handlers

B Group Permanent o

Handler Name Name (s)
RK8E disk system handler RK8E SYS, RKBO
RK8 disk system handler RK8 SYS, RKAl
RF08 disk system handler] RFO08 SYS
DF32 disk system handler DF32 SsYS
Console terminal (2-page handler) KL8E TTY
High-speed 1/0 simulated KS33 PTR, PTP

on ASR-33 Teletype

High-speed reader/punch PT8E PTR, PTP
TABE cassette drives 0 and 1 TA8A CSAQ, CsAl
LP08, LS8E, LV8E line printers LPSV LPT

These handlers are present on the system cassette AR-4588C-BA. To
include extra handlers in BUILD, build an 0S/8 system, use MCPIP to
move specific device handlers onto the system device, then use the
BUILD command LOAD. MCPIP is discussed in detail in Chapter 18.

9.1.2 Paper Tape Systems
When 0S/8 software is supplied on paper tape, the device handlers
shown in Table 9-3 are included in BUILD.

Table 9-3
Standard Paper Tape System Device Handlers

-) Group Permanent
Handler Name Name (s)
RK8E disk system handler RKS8E SYS, RKBO
RK8 disk system handler RKS8 SYS, RKAl
RF08 disk system handler RF08 SYS
DF32 disk system handler DF32 SYS

(continued on next page)

BUILD

Table 9-3 (Cont.)
Standard Paper Tape System Device Handlers

Group Permanent
Handler Name Name (s)
Console terminal (2-page handler) KL8E TTY
High-speed I/0 simulated KS33 PTR, PTP
on ASR-33 Teletype
High-speed reader/punch PT8E PTR, PTP
TABE cassette drives 0 and 1 TA8A CsA0, CsAl
LP08, LS8E, LVBE line printers LPSV LPT

Two binary paper tapes provide other 0S/8 handlers not included in
BUILD: AK-4660C-BA contains the file-structured handlers;
AK-4671C-BA contains character-oriented handlers. These tapes contain
handlers that you can load into core using the BUILD command LOAD.

The BUILD device handler tapes are composed of separate segments, with
a short length of leader/trailer code between them. (All of these
handlers are in the special format described in BUILD Device Handler
Forimat in this section.) Table 9-4 contains a list of the handlers
that are included on the tapes. The handlers are listed in the order
in which they appear on the tapes. The TC08 handler is the first
segment on handler tape #1, and the KL8E terminal handler is the first
segment on handler tape $#2. The segments should be either labeled or
separated for easier use.

To utilize a binary handler file, place the desired segment into the
paper tape reader. Use the BUILD command LOAD to load that segment as
follows:

SLOAD PTR][:] Type a colon (:) after the device name if you

- loaded BUILD from an 05/8 system device. The °

$ allows time to place the tape in the reader. Type
any keyboard character to load the tape. When the
$ reappears, the handler has been 1loaded into
BUILD's table. Type the BUILD command PRINT to
verify that the handler has been loaded.

Table 9-4
0S/8 Device Handlers
File Name
on DECtape,
Group Permanent LINCtape, or
Handler Name Name (s) Cassette
TC08 DECtape system handler TC08 |SYS, DTAOQ TC08SY.BN
12K TD8E DECtape system TD8E |[SYS, DTA(O, DTAl | TDS8ESY.BN
handler
8K ROM TD8E DECtape ROM sYS, DTAO, DTAl | ROMMSY.BN
system handler

(continued on next page)

Table 9-4

BUILD

(Cont.)

0S/8 Device Handlers

File Name
on DECtape,
Group Permanent LINCtape, or
Handler Name Name (s) Cassette
LINCtape system handler LINC | SYS, LTAOQ LINCSY.BN
RK8E disk system handler RK8E | SYS, RKA(O, RKBO | RKS8ESY.BN
RK8 disk system handler RK8 SYS, RKAQ0, RKAl | RK08SY.BN
RF08 disk system handler RF08 |SYS RF08SY.BN
DF32 disk system handler DF32 | SYS DF32SY.BN
TD8E DECtape drives 0 and 1 TD8A |DTAQ, DTAl TD8EA.BN
TD8E DECtape drives 2 and 3 TD8B | DTA2, DTA3 TD8EB.BN
TD8E DECtape drives 4 and 5 TD8C | DTA4, DTAS TD8EC.BN
TD8E DECtape drives 6 and 7 TD8D | DTA6, DTA7 TD8ED.BN
TC08 DECtape drives 0-7 TC DTAQ-DTA7 TCO8NS.BN
LINCtape drives 0-7 LNC LTAO-LTA7 LINCNS.BN
RK8E disk nonsystem handler RK0O5 | RKAO-3, RKBO-3 RK8ENS.BN
RK8 disk nonsystem handler RK01l | RKAQO—-RKA3 RKO8NS.BN
RF08 disk nonsystem handler RF RF, NULL RKO8NS.BN
DF32 disk nonsystem handler DF DF DF32NS.BN
RX01SY disk system handler RX8E | SYS RX01SY.BN
RX01NS disk nonsystem handler | RX01 | RXAO.RXAl RX01INS.BN
VT50 VT-50 input handler VT50 | LST VT50.BN
LQP line printer handler LQP LPT LQP.BN
Octal block DUMP handler DUMP | DUMP DUMP. BN
RX78B disk nonsystem RX01 | RXA2, RXA3 RX78B.BN
handler (for VT-78 only)
Console terminal (2-page KL8E | TTY KL8E.BN
handler)
Console terminal (l-page AS33 | TTY ASR33.BN
handler)
(continued on next page)

BUILD

Table 9-4 (Cont.)
0S/8 Device Handlers

File Name
on DECtape,
Group Permanent LINCtape, or
Handler Name Name (s) Cassette
High-speed I/0 simulated on KS33 |PTR, PTP LSPT.BN
ASR-33 Teletype
High-speed reader/punch PT8E (PTR, PTP PT8E.BN
LP08, LS8E, LV8E line LPSV |LPT LPSV.BN
printers
Anelex 645 line printer L645 |LPT L645.BN
Card reader CR8E |CDR CR8E.BN
BATCH handler BAT BAT BAT.BN
PDP-12 scope VR12 |TV VR12.BN
TU10 magnetic tape drives 0-7 | TM8E |MTAO-MTA7 TM8E.BN
TABE cassette drives 0 and 1 TA8A |CSAQ0, Csal CSA.BN
TABE cassette drives 2 and 3 TA8B |{CSA2, CSA3 CSB.BN
TABE cassette drives 4 and 5 TA8C |{CSA4, CSAS CSC.BN
TABE cassette drives 6 and 7 TA8D |CSA6, CSA7 CSD.BN

9.2 CALLING AND USING BUILD

BUILD is distributed as both a binary paper tape or cassette and as a
core 1image file (BUILD.SV) on the system DECtape or LINCtape. You
should load and save the binary BUILD file on the system device when
you build the initial system (see 0S/8 System Generation Notes). To
use the BUILD.SV file on the system device, type the following command
in response to the dot the 0S/8 Keyboard Monitor prints:

+RUN SYS BUILD

NOTE

It is important that you specify the RUN
command, rather than the R command, when
loading BUILD into core. This will
allow the use of the SAV command without
specifying SAVE arguments.

BUILD responds by printing a $, signaling that it is ready to accept
commands.

BUILD uses a keyboard monitor similar to the one contained in the 0S/8

system. Text is input from the terminal and interpreted by BUILD.
Table 9-5 lists the special characters that are available for editing.

9-6

BUILD

Table 9-5
BUILD Editing Characters

Character Function

ALT MODE key Terminate command; begin command
execution. No carriage return/line feed is
generated.

CARRIAGE RETURN Terminate command; begin command
execution. Also generate carriage
return/line feed combination.

CTRL/C Terminate command; return immediately to
the 0S/8 Keyboard Monitor.

CTRL/O Terminate printing; return control to
BUILD.

CTRL/U Ignore line; the line may be typed again.

LINE FEED key Examine contents of the command line.

RUBOUT key Delete the last typed character from the
command.

The standard characters permitted in a BUILD command line are:
A-Z, 0-9, SPACE, PERIOD, =, COMMA, COLON, HYPHEN
Typing any other character causes the error message:

SYNTAX ERROR

9.3 BUILD COMMANDS

The commands available in BUILD are:

ALTER INSERT
BOOT LOAD
BUILD NAME
CORE PRINT
CTL QLIST
DCB REPLACE
DELETE SYSTEM
DSK UNLOAD
EXAMINE VERSION

The general format of the command string is:

Scommand args

9-7

BUILD

where command represents a legal command from the 1list and args
represents a file name, device, group name, or other argument
associated with the command. You can type the command in full or
abbreviate it to the first two characters. For example:

SPRINT
and
$PR
are the same. If you attempt to issue an illegal command, BUILD

replies by printing the illegal command preceded by a ?. Thus the
illegal command ERASE would appear:

$ERASE
FERASE
£

—

9.3.1 The Hyphen Construction

Certain BUILD commands (DELETE, INSERT, REPLACE) allow the use of the
hyphen construction to specify more than one permanent name. These
permanent names must be four characters long and must differ only in
the 1last character. You can insert permanent names that meet this
restriction with the hyphen construction, so 1long as the last
characters form a sequence of consecutive ASCII characters.

For example, if you wish to delete DECtape handlers DTAQ0, DTAl, DTA2,
and DTA3, type:

S$DELETE DTAO»DTA1,DTA2,DTA3
or you can use the hyphen construction and type:

$DELETE DTAO-3

9.3.2 PRINT
Syntax:

SPRINT or $PR
Function:

Prints detailed list of the BUILD devices tables. The following
example shows five handlers.

RFO8 1 SYS§

RRBE:! _XSYS _ XRKEO
KLitE 2 XTTY

SINE FTR __XFTF
LFLVE LET

Group names are printed first in each 1line, followed by a colon.
Following the group name is the list of permanent names available with
each group. If one of the permanent names in a group is SYS, then
this handler can be a system handler. An 0S/8 system must have just
one system handler. Some system handlers have other coresident
handlers.

BUILD

Any handler that is active is marked with an asterisk to the left of
its permanent name (RKBO, TTY, PTP in the printout), and the devices
will be included in the new 0S/8 system (i.e., these handlers were
inserted with the INSERT, SYS, or REPLACE commands. Other commands
are available for removing, loading, and deactivating handlers). The
preceding printout indicates that RK8E is the system device. The
handler RK8E:RKBO is also marked as being active.

After printing the list of available handlers, the PRINT command might
also print some additional information. I1f, for example, you
specified RKS8E:RKBO with the DSK command, the following is printed:

DNSK=RKBE ! RKRBO

If you specified the core command to restrict the core to 12K, the
message:

CORE=2

is printed, indicating that field 2 is to be the highest core field
available to the 0S/8 system.

9.3.3 QLIST
Syntax:

$QLIST or $QL
Function:

List the active permanent names on the system. No * is printed and
the system device is the only group name printed. For example:

$0LIST
FTR DTA3 RKOB8:SYS LFT DTA4

9.3.4 LOAD
Syntax:

SLOAD activename or SLOAD dev:filename
Function:
Use LOAD to load a new device handler into BUILD. This handler can be
one supplied by DIGITAL or one you have written. See the 0S/8
Software Support Manual (DEC-S8-0SSMB-A-D) for instructions on writing

device handlers. This handler is input into BUILD as a binary file or
image.

If you are running BUILD stand-alone, e.g., to create an initial 05/8
system, the LOAD command has the form:

SLOAD activename

where activename is the permanent name of an input device handler that
the INSERT, REPLACE, or SYSTEM command has made active. It must be a
handler for a non-file structured device. For example, to load a new
handler from a binary paper tape with the PTR handler already in
BUILD, type:

$LOAD FTR

BUILD

If you are running BUILD under control of 0S/8, the LOAD command has
the form:

SLOAD dev:filename

where dev is an input device handler that exists in the current 0S/8
system. (These are not the same as the handlers that BUILD marks
active.) If no dev: 1is specified, DSK: is assumed.

If dev: is non-file structured (i.e., paper tape), you may omit the
filename. The filename has the form:

name.extension

Filename is the binary file of the new handler to be 1loaded. The
default extension is .BN. If you use no extension, you may omit the
dot (.).

Example:

$LOAD DTA3!HANDLR.O3 Load a file named HANDLR, with an
- extension of 03, from DTA3.

You may specify several files that you are 1loading on one 1line.
Separate the files by commas. You must specify a device for each
file, or DSK will be assumed. If multiple files are specified, each
file must contain a separate handler to be loaded. For example:

$LOAD DTAZIFILEL OTASIFILEZ

Once you have successfully issued the LOAD command, the new device
handlers become available for further manipulation. The new handlers
will appear in the PRINT output, but will not be marked as active.

9.3.5 INSERT
Syntax:

S$INSERT gname,pname
Function:
After a LOAD command has made a handler or group of handlers available
for insertion into the 0S/8 system, use the INSERT command to make
particular entry points active. The INSERT command uses two
arguments; gname and pname. Gname is the group name of the handler,
for example, the gname for TC08 DECtape is TC. Pname is the permanent
name by which the device is currently known to BUILD. See Table 9-4

for a complete list of permanent device names. TC08 DECtape thus has
the group name TC and the permanent names DTAO-DTA7.

Examples:

$IN RLBE-TTY
$IN TCOB,SYS

If you specified no permanent name (and no :), the first name in the
device group is assumed. For example:

$INSERT TC

would assign DTAO0 as the permanent name.

BUILD

You can insert several handlers in the same group into the same
command by separating the permanent names with commas. For example:

$IN TC»DTAO,DTA3DITA7
If several permanent names (each four characters long) differ only in
the last character, you can insert them simultaneously with the hyphen
construction so long as the last characters form a sequence of
consecutive ASCII characters.
Example:

$INSERT TC,DTAZ-5
is the same as

$INSERT TC»DTA2,DTA3»DTA4,DTAS
and

S$INSERT RKO1sRRAO-2
is the same as

$INSERT RKO1sRKAO»RKAL sRNAZ
If the permanent name specified is not part of the group name
specified, or if the group name does not exist, the following message
is printed:

name NOT FOUND

If disk is the device you are inserting, you can follow the group name
with a construction of the form:

pname=n

Where n is a digit in the range 1 to 7 and represents the number of
platters available. Use this option for the RF08 and DF32 disks. For
example:

$IN RFsRF=2

If you specify no such option, =1 is assumed. If n is too 1large for
the device specified, the following message is printed:

TPLAT

9.3.6 DELETE
Syntax:
SDELETE aname
Function:
DELETE takes a device that is currently marked as active and makes it
inactive. (Active devices are marked with an * in the PRINT command
output and are printed by the QLIST command.)
The argument for DELETE is the permanent name of the device. You can

obtain the current permanent name from the PRINT or QLIST output. The
major function of DELETE is to make device slots available to BUILD.

9-11

BUILD

For example, assume that the QLIST command output is:

DTAO DTA1 RKBE:!SYS RKBO TTY LPT CSAO CSA1 CSA2 CSA3

If the following command is issued to BUILD:

$DELETE CSAQrCSA1rCSAZ2yCSA3
CSAO0, CSAl, CSA2, and CSA3 will no longer be permanent devices, and
the slots used by the TA8A and TA8B device groups will be made
available to BUILD. The QLIST output after the above command will be:

DTAO DTA1 RKBE:!SYS RKRO TTY LFT

Note, as previously explained, that vyou can use the hyphen
construction in DELETE to remove a sequence of devices. Therefore,
you can type the command to make the cassette handlers inactive as
follows:

SDELETE CSA0-3

9.3.7 REPLACE
Syntax:
SREPLACE pname=gname, pnamel
Function:
REPLACE combines the functions of DELETE and INSERT to delete one
device and activate another in a single step. The arguments for

REPLACE are:

pname The permanent name of the device to be deleted.
(Same as the argument of the DELETE command.)

gname, pname2 The group name and permanent name of the

particular device to be inserted into the system
(see INSERT for more details).

Example:
Assume the PRINT output is:
F18F XFTF___ XFTR

CKEE $ XCDR
Y} RKAO RKNRO RKA1 RKE1

Use REPLACE to delete the card reader (CDR) and to insert the RKO05
group handler for RKAO:

$REFLACE CDR=RKOSsRRAC

The output of PRINT after this REPLACE is:

F1at 2 XFTF XFTR
CRUF: CDR
RROS ¢ XRKAC RKEO kKA1 RKR1

9-12

BUILD

Use the hyphen construction with REPLACE to delete and insert more
than one device handler. For example, assume you are replacing the
LINCtape handlers LTAO, LTAl, LTA2, and LTAS5 with DECtape handlers
pDTAO, DTAl, DTA2, and DTAS5. The following command accomplishes this:

$REFLACE LTAO-2sLTAS=TC»ITAO-2yDTAS

9.3.8 UNLOAD
Syntax:

SUNLOAD gname, or SUNLOAD gname, pname
Function:
Use UNLOAD to delete a handler group (gname) or a permanent name
(pname) from the BUILD system. (This differs from DELETE, which does
not physically eliminate a device.) Use UNLOAD primarily when the NO

ROOM error occurs during a LOAD command.

For example, assume you are removing the entire group of LINCtape
handlers. Type the command:

$UNLOAD LNC

This command unloads the LINCtape handler LNC and all permanent names
(LTAO, LTAl, LTA2, LTA3, etc.) associated with it.

To remove a particular permanent name from BUILD, e.g., DTA3, type:
$UNLOAD TCIDTA3

This command unloads only the entry point name.

To remove several permanent names, but not the entire group, use the

UNLOAD command, with commas separating the permanent names. For

example:

$UNLOAD TCIDTAOsDTAZ

You cannot use the hyphen construction with the UNLOAD command.

9.3.9 NAME
Syntax:

SNAME pname=pnamel
Function:

The NAME command allows you to alter the device name that will be used
by 05/8. The first argument, pname, must be the current name of a
device marked active in the PRINT output. Pname2 is the name you wish
to call this device. You may use only 4-character device names in the
NAME command. If you enter longer names, all characters beyond the
first four are ignored. After you wuse the NAME command, pname2
becomes the current permanent name; pname is unknown to BUILD.

BUILD

Example:

Assume that the PRINT output is:

LIS *NTAO %DTA1 NTAZ2 LTA3
RRBE: #5Y5 XRKEO
KL&I™ ¢ XI1TY
F1BE: X¥FTF XFTR
To change the paper tape reader so that it is
permanent name READ, use the following command:
$NAME FTR=READ
The output from PRINT would then be:
Ic @ XDTAQ xDTA1 DTA2 DTA3
RKBE $ xXSYS XRKEQ
KK8E : xXTTY
FTBE? XFIF *XREAD
If the permanent name specified as pname is not a
device, the message:
pname NOT FOUND
is printed. 1If this message appears, check the

determine the correct permanent name.

9.3.10 ALTER
Syntax:

SALTER gname, loc=newvalue
Function:

The ALTER command allows you to change locations in
The arguments are:

gname Group name of the handler.

loc Alter relative octal location.
a 1l-page handler, loc must be
the range 0-0177. If it is a 2
must be an octal number in the

newvalue An octal number specifying the

location specified by loc.
=newvalue, BUILD prints the
followed by a slash. You can

or type a carriage return to re

recognized the

by

currently active

PRINT output to

device handlers.

If the handler is

an octal number in
-page handler, 1loc
range 0-0377.

new contents of the
If you do not enter
0ld value of 1loc
then enter newvalue
tain the o0ld value.

BUILD

9.3.11 EXAMINE
Syntax:

SEXAMINE gname, loc
Function:

EXAMINE allows you to examine, but not modify, a location within a
device handler. See the ALTER command.

9.3.12 DSK
Syntax:

$DSK=gname ,pname or $DSK=aname
Function:
Use the DSK command to specify which device you are designating as
DSK, the default storage device for 0S/8. If you use the first form
of the command, i.e.,

$DSK=gname ,pname

the gname is the group name of the device, and pname is the permanent
name. For example:

$NSK=TCOBINTAO
assigns DTAQ0 as the device called DSK.
When you issue the DSK command, you need not enter the permanent name.
However, you must enter the permanent name, via an INSERT, REPLACE, or
SYSTEM command before you issue the BOOT command.
If you use the second form of the command, i.e.,

$DSK=aname
aname must be a permanent name BUILD marks as active. For example,
the following command specifies the already active device RKAO as the
default device DSK:

$DISKA=RKAO

If you enter no DSK command, or if you issue the command without an
argument, i.e.,

or

BUILD specifies SYS as DSK when you issue a BOOT command.

9-15

BUILD

9.3.13 CORE
Syntax:

$CORE n
Function:
You use the CORE command to specify the highest core field available
to the 0S/8 system being built. The n is an octal number in the range
0 to 7. If n is 0 or omitted, or if you do not use the CORE command,
the built system will use all of the available core. If n specifies
more core than is available, the following message is printed:

?CORE

The value of n for the available core sizes is as follows:

Value of n Core

all available core
8K
12K
16K
20K
24K
28K
32K

N WNE-=O

For example, a system that is to use only 24K of a 32K system requires
the following CORE command:

$CORE 5

9.3.14 DCB
Syntax:
$DCB aname or $DCBaname=newvalue
Function:
The DCB command allows you to examine or modify the DCB word

associated with a permanent name (see Section 9.5 for information on
DCB words) .

The DCB word is the first word that appears after the permanent name
in a description (from the handler header information words). Aname
must be the permanent name of a device currently marked as active in
the PRINT output.

Example:

$OCE DTA4=6160

changes the DCB of DTA4 so that this handler becomes a read-only
device. You could also type this command as:

$OCE DTA4
4160/6160

BUILD

9.3.15 CTL
Syntax:

$CTL aname=1loc
Function:

The CTL command allows you to modify the control word that appears
after the DCB word in the handler header block. For example:

$CTL LTA3=24

changes the entry point of the LTA3 handler to relative location 24.

9.3.16 VERSION
Syntax:

SVERSION or S$VE
Function:

The VERSION command prints BUILD's version number on the terminal.

9.3.17 SIZE
Syntax:
S$SIZE aname or S$SIZE aname=new value

aname must be the permanent name of a device currently marked as
active.

Example:
$SIZE RFO8=1777
changes the length of the RF08 handler to 1777.
Function:
The SIZE command modifies word ten of a handler header block. word

ten specifies the size, 1in blocks, of a single platter on a system
device.

9.3.18 SYSTEM
Syntax:
$SYSTEM sname=n
Function:
The SYSTEM command specifies devices that are system handlers or that
are coresident with system handlers. The number n reflects the number

of platters included in the system device (valid only for multiple
platter RF08 and DF32 disks). (Table 1-6 lists the available system

BUILD

handlers and their associated values for n.) The argqument sname must
be one of the legal device system names. If it is not, BUILD prints:

75YS
thereby requesting a new system specification.

Action is not taken on the SYSTEM command until you give the BOOTSTRAP
command, so you may respecify a device with SYS. The system device
used is the last one issued prior to the BOOT command. Specifying a
new system device is not always necessary. For example, if you wish
to insert new peripheral handlers, then this command is not needed.
If you do not issue it, the 0S/8 resident system is not affected
beyond having altered device tables.

BUILD includes the SYSTEM command only so it will be compatible with
older versions of BUILD. You can specify the system device with the
INSERT command. For example, the command:

$5YS RF08=2
is the same as the command:

$INSERT RFO08,8YS=2

If the device specified in the SYS command is not the current system
device, you will have an opportunity to have a zero directory placed
on your new system device. If the system device is the same as the
current system device, no new directory will result.

9.3.19 BUILD
Syntax:

$BUILD or $BU
Function:

You use the BUILD command only when building an initial 0S/8 system
from cassettes or paper tape. When you type the BUILD command, BUILD
prints:

LOAD_0S/8:

to which you must respond by typing the device that contains the new
0S/8 monitor, e.g.,

LOAD 0S/8% CSAO
BUILD then loads and writes the various parts of 0S5/8 onto the system
device. After writing 0S/8, BUILD prints:

LOAD CIit

to which you respond with the appropriate device, or with a carriage
return to specify that the device is the same as the one specified in
the LOAD 0S/8: message. BUILD loads the Command Decoder and writes
it onto the system device. :

Do not use the BUILD command at any time other than while building an
initial 0S/8 system. When you type this command, 0S/8 assumes that
you are building a new 0S/8 system. It automatically zeroes the
system device directory. Refer to the 0S/8 System Generation Notes
for instructions on building an initial system.

9-18

BUILD

9.3.20 BOOTSTRAP
Syntax:

SBOOTSTRAP or $BO
Function:
BOOTSTRAP is the command that finally implements all the changes that
you made with BUILD. BOOT rewrites all relevant Monitor tables and
device handlers to reflect the updated system status. The devices
BUILD had marked active now become device handlers in the system.
Before you type a BOOTSTRAP command, you must specify the system
device with either the SYSTEM or INSERT command. If no SYS is
specified, the message:

SYS NOT FOUND

is printed.

If the system device specified is different from the current system
device, BUILD copies the system from the current system device to the
new system device. After the copy is complete, BUILD asks:

WRITE ZERO DIRECT?

to determine whether a new (zero) directory is to be written on the
new system device. If the reply is YES, the system will place a zero
directory on the device. Any other reply causes the system to retain
the old directory.

NOTE

Exercise care 1if you want the old
directory retained. The directory must
be one of an 0S/8 system device.

After you answer this guestion, BUILD updates the system and prints:

SYS BUILT

+*

Control returns to the Keyboard Monitor. When the BOOTSTRAP command
has performed its functions and the Keyboard Monitor is once again
active, save the copy of BUILD just used. This way, an image of the
current system status is preserved, and you can use the saved copy of
BUILD again. When it is used again, the devices 1initially marked
active remain marked active. To save BUILD, type:

+SAVE 8YS BUILD

in response to the dot printed by the Keyboard Monitor. This assumes
that you originally loaded BUILD into core with a RU or RUN command.

9-19

BUILD

9.4 BUILD ERROR MESSAGES

The following is a list of error messages that may appear when using
BUILD. These messages usually indicate a syntax or user error.

Table 9-6
BUILD Error Messages

Message Explanation

?BAD ARG No device name was included in the LOAD
command.

?BAD INPUT An error was detected in the binary file;
it is not a proper input for the LOAD
command.

?BAD LOAD An attempt was made to 1load a binary

handler that is not in the correct format.

?BAD ORIGIN The origin in a binary file is not in the
range 200-577.

?CORE A CORE command specified more memory than
is physically available, or the BOOT
command was issued on an 8K system with a
2-page system handler active. Two—-page
system handlers require at 1least 12K of
core to be present on the 0S/8 system.

?DSK The device specified in a DSK command is
not a file structured device.

?HANDLERS More than 15 handlers, including SYS and
DSK, were active when a BOOT command was
issued.

I/0 ERR An error occurred while reading from an

input device during a LOAD command.

?NAME A device or file name was not designated in
a command that requires one to be present.

NO ROOM Too many device handlers were present on
the system when a LOAD or BUILD command was
typed. The UNLOAD command must be used to
remove a handler before another can be
loaded.

name NOT FOUND The device or file name designated in the
command was not found.

?PLAT The =n in a SYS command is too large for
the device specified, e.g., RF08=5,

?SLOTS More than eight groups of non-system
handlers were inserted. Each slot may have
more than one entry point. To correct,
delete PNAMES until there are eight or
fewer nonsystem handlers.

(continued on next page)

BUILD

Table 9-6 (Cont.)
BUILD Error Messages

Message Explanation

?SYNTAX An illegal character was typed in a BUILD
command line. The line must be retyped.

28YS One of the following conditions exists:

a. A permanent name in a SYS command was
not a system handler or coresident with
one.

b. A BOOT command was issued when two or
more system handlers were active.

c. A BOOT command was issued when an
active handler that must be coresident
with a SYS handler did not have the
system handler active.

SYS ERR An I/O error occurred with a system
handler. The computer halts. Press CONT
to retry or restart the BUILD procedure
from the beginning. Do not assume that a
valid 0S/8 system remains in core,

SYS NOT FOUND No active handler with the name 8SYS was
present when a BOOTSTRAP command was
issued.

9.5 BUILD DEVICE HANDLER FORMAT

Use the BUILD command LOAD to load device handlers not provided by
BUILD into core. They can then be inserted into the 0S/8 system. The
format of the input to LOAD is a binary file containing the handler as
well as a header block that contains information pertaining to the
devices included in that file. You should code the handler in PALS8
machine language. The structure of the source for a BUILD device
handler is:

*0
HEADER BLOCK
*200
BODY OF DEVICE
HANDLER

The origins at 0 and 200 are vital to BUILD. The *0 is an important
part of the header block. If you omit this, you cannot load. The
*200 is also necessary for loading. If the handler contains an origin
outside the range 200-577, BUILD generates an error message and then
aborts the load.

9.5.1 Header Block

BUILD

The header block contains the following information:

Word 1:

Words 2-9:

Words 10-17:

Thus, each handler

-X, where X is the number of separate handlers
contained in this file. Thus a handler for TCO08
has the first word equal to -10(octal).

Descriptor block for the first handler in the
group.

Descriptor block for second handler in the group.

Descriptor block for the 1last handler in the
group. If the handler is a system handler, the
length of the bootstrap and the bootstrap itself
follows.

in the group must have an eight-word block

describing its characteristics. If more than twelve handlers are in a
group, an error generates during the LOAD.

9.5.2 Descriptor Block

Each eight-word descriptor block contains the following information:

Words 1,2:

Words 3,4:

Word 5:

Word 6:

Device type name. This name is the group name, or
type, of all the handlers in this group. It is
usually designated by the DEVICE pseudo-op.

Example: DEVICE RKS8

0S/8 device name. This 1is the name (permanent
name) by which the particular device will be
recognized in the 0S/8 system. The NAME command
can alter it.

Example: DEVICE RKAO

Device Control Block. This word reflects the type
of device, in accordance with Table 9-7. Bits
9-11 specify the maximum number of platters on the
device (0=1).

Example: 4050

Entry point word. This word must contain the
entry point offset in bits 5-11 (see Section
9.5.4). Bit 0 should be a 1 if the handler is a
two-page handler. Bit 1 should be a 1 if the
entry point is SYS. Bit 2 should bea 1 if the
entry point is coresident with SYS.

Example: 0020

BUILD

word 7: Must be 0.

Word 8: Must be 0, except for a system handler that uses
it to specify the block length of the device as a
negative number.

As an example, consider the handler for the nonsystem RKO05 handlers.
This file contains four separate handlers; the source code would
appear as follows:

*0
-4 /4 DEVICES

DEVICE RKO05; DEVICE RKAO; 4050; 0020; ZBLOCK 2
DEVICE RKO5; DEVICE RKBO; 4050; 0021; ZBLOCK 2
DEVICE RKO05; DEVICE RKAl; 4050; 0022; ZBLOCK 2
DEVICE RKO05; DEVICE RKBl; 4050; 0023; ZBLOCK 2

*200

(HANDLER BODY)
The device type of the group 1is RKO05 (Words 1-2). The permanent
device names are RKAO, RKBO, RKAl, RKBl. Since each device is RKO05,
the device control block (DCB) word for each is identical.
The entry point word indicates where the entry point for that
particular device occurs relative to the top of the page. Thus, in
the above example, RKAO enters at the 20th location from the top of
the page, RKBO at the 21lst, etc.

It is vital that this information is accurate. If errors exist in
this data, unpredictable results occur when you generate the system.

9.5.3 Breakdown of DCB Word

The DCB word for a device provides specific information that is used
in the 0S/8 Monitor. Table 9-7 details its structure.

Table 9-7
DCB Word
Bit Meaning
0 1 if file structured device
1 1 if read-only device (e.g., PTR)
2 1 if write-only device (e.g., LPT)

Device Type

3-8 00 = console terminal
01 = high-speed paper tape reader
02 = high-speed paper tape punch
03 = card reader
04 = line printer

(continued on next page)

BUILD

Table 9-7 (Cont.)

DCB Word
Bit Meaning
Device Type
3-8 05 = RK8 Disk
(Cont.) 06 = RF08 (1 platter)
07 = RF08 (2 platter)
10 = RF08 (3 platter)
11 = RF08 (4 platter)
12 = DF32 (1 platter)
13 = DF32 (2 platter)
14 = DF32 (3 platter)
15 = DF32 (4 platter)
16 = TC08 DECtape
17 = LINCtape
20 = TM8B8E magnetic tape
21 = TD8E DECtape
22 = BAT - BATCH handler
23 = RK8E disk
24 = NULL - NULL handler
25 = RX01 diskette
26 = Unused
27 = TABE cassettes
30 = PDP-12 scope
31-35 = Unused by DIGITAL
36 = Dump Handler
37 = Unused by DIGITAL
40-77 = Reserved for user-written handlers
9-11 Used only by 05/8 Monitor

Whenever you insert a device into 0S/8, follow this structure to
obtain correct results.

9.5.4 Entry Point Offset

Word 6 of each device descriptor block specifies the relative entry
point of that particular handler. Devices supplied by DIGITAL have a
fixed set of entry points, described below.

Use care when coding new device handlers for insertion into the
system. The entry point offset for the new handler must not be the
same for any other file structured device in the system. For example,
0S/8 currently uses relative entry points 7-24 for file structured
devices. No new handler should have entry points at 7 to 24 of the
page. If this occurs, the system may perform incorrectly.

BUILD

Current file device and entry point offsets appear below:

Device Entry Relative to Top of Page
TC08 DECtape 10-17
TD8E DECtape 10-17
LINCtape 10-17
System device 7
RK8 /RK8E disk 20-23
RF/DF disk 24
RXAOD 30
RXAl 34

Thus, the user-coded file devices should use entry points other than
7-24, 30, 34.

If you add a new file structured user device to the system, alter the
device-length table in PIP to permit zeroing of the device directory.
To do this, use ODT as follows:

.GET SYS PIP

.ODT

136nn/0000 xxxx

°C (user types CTRL/C)
.SAVE SYS PIP

The nn represents the two-digit device Table 9-12 indicates. The xxxx
is the negative of the last block number on the device. Both nn and
XXXX are octal numbers.

For example, if you assign the new device a code of 40 (currently the
first unused entry), and the last 05/8 block on the device was block
1000, PIP would change as follows:

L.GET S§YS PIP
LooTt

1364070000 7000
~C

LSAVE SYS PIF

9.6 CREATING A SYSTEM HANDLER

When vyou create a new system handler, observe the following
restrictions:

® The length of a bootstrap must be greater than or egual to 21
(octal) locations. You must pad a bootstrap shorter than 21
locations, otherwise BUILD results are unpredictable.

e The length of the bootstrap must be less than or egual to 177
(octal) locations.

e If the system handler is a one-page handler, only the first 47
(octal) locations of the bootstrap are significant. The
remaining locations are ignored and not written on the system
device. Also, no handler may have more than 20 (octal) entry
points.

e If a system handler is two pages long, relative location 12 of
the first page must contain a 3. The second page loads into
location 27600 and is stored on block 66 of SYS:.

CHAPTER 10

CASSETTE AND MAGNETIC TAPE POSITIONER (CAMP)

The CAMP program positions cassettes, magnetic tapes, and certain
other devices. To call CAMP from the system device, type:

+R CAMP

in response to the Keyboard Monitor dot. CAMP prints a # to indicate
it is ready to receive a command. You may terminate the command line
you enter with a carriage return (CAMP retains control) or an ALTMODE
(control returns to the Keyboard Monitor).

10.1 CAMP COMMANDS

Each CAMP command begins with a keyword consisting of two or more
letters. You need not type the full CAMP command; however, each
command has letters that are required. The CAMP commands appear below
in alphabetical order. Letters not required are underlined.

BACKSPACE
EOF

HELP
REWIND
SKIP
UNLOAD
VERSION

10.1.1 BACKSPACE Command

The BACKSPACE command spaces a magnetic tape or cassette backward a
specified number of files or records. You may also issue this command
indirectly with the CCL BACKSPACE command.

The BACKSPACE command has the form:

Records
BA dev: nnnn
Files

Where "dev:" is the permanent name of a cassette or magnetic tape
drive. The "nnnn" 1is an unsigned decimal number representing the
number of records or files to backspace. This number must be in the

range 0-4095. If you enter no number, nnnn=1 is assumed. A keyword
beginning with either an R, indicating records, or an F, indicating
files, follows this number. If neither PF nor R is entered, F is
assumed.

10-1

CASSETTE AND MAGNETIC TAPE POSITIONER (CAMP)

Examples:
#BA CSA0: 2 F

positions the cassette mounted on CSAO0 backward two files.
#BA MTA1:

positions the magnetic tape mounted on MTAl backward one file,

If a file mark is read before the tape has spaced over the proper
number of records, the message:

% CAN‘T - AT BOF

appears and the device is moved forward one record. This leaves the
device positioned at the beginning of the file (just before a data
record).

The file where the device is currently positioned is not counted when
you make an attempt to backspace a number of files. For example, the
command:

3BA MTAl: 3 F
moves the tape backward over four file marks and then moves it forward
one record. The tape is then positioned at the beginning of the file.

If nnnn=0, the tape backspaces to the beginning of the file where it
is currently positioned.

10.1.2 EOF Command
The EOF command writes a single file mark (file gap) on the magnetic
tape or cassette you have specified. You may also issue this command
indirectly with the CCL EOF command.
The EOF command has the form:

EOF dev:

where "dev:" is the permanent name of a cassette or magnetic tape
drive.

Example:

$EOF CSAL:

10.1.3 HELP Command

The HELP command prints a short message on the console terminal,
reminding you of the CAMP command syntax. The form of this command
is:

#HELF

10-2

CASSETTE AND MAGNETIC TAPE POSITIONER (CAMP)

10.1.4 REWIND Command

The REWIND command issues a rewind command to one of the following
0S/8 device controllers: cassette, magnetic tape, or TC08 DECtape.

The REWIND command form is:
REWIND dev:

where "dev:" can be any 0S/8 file structured device. If "dev:" is a
cassette, control returns to CAMP while the cassette is rewinding:
CAMP prints another #, indicating it 1is ready to receive another
command. If "dev:" 1is magnetic tape or TC08 DECtape, the device
rewinds immediately, and control returns to the 0S/8 Keyboard Monitor
while the device is rewinding. 1If you issue a REWIND command to any
other 0S/8 device (e.g., LINCtape), control returns to CAMP after the
device is rewound.

Example:

$RE DTA1:

10.1.5 SKIP Command

The SKIP command advances over the number of files or records you
specified on a magnetic tape. You may also issue this command
indirectly with the CCL SKIP command. You do not implement the SKIP
command for cassettes.

The SKIP command has the form:

nnnn Records
#SKIP MTAn: Files
EOD

where MTAn: may be any magnetic tape drive, depending upon the number
of magnetic tape drives on the 0S/8 system. The "nnnn" is an unsigned
decimal number representing the number of files or records you are
advancing over. This number must be in the range 0-4095. EOD
indicates that the tape is to advance to the end of data. The end of
data on a magnetic tape is a point between two file marks. If the
tape is already past the end of data, rewind it before you issue the
EOD command. 1If you have specified neither "nnnn" nor EOD, nnnn=1 is
assumed.

If you have specified a number, a keyword beginning with R (for
records) or F (for files) may follow. 1If neither F nor R is entered,
F is assumed.
Examples:

#SKIP MTAO! 2 RECORDS
advances the magnetic tape on MTA0: forward two records.

$SKIP MTALl: 6 F

advances the magnetic tape on MTAl: forward six files.

10-3

CASSETTE AND MAGNETIC TAPE POSITIONER (CAMP)

If a file mark is read before the tape has advanced over the proper
number of records, the warning message:

% _CAN'T - AT EOF

appears and the tape moves backward one record to the end of the file
{just after the 1last data record but before the file mark). 1If
nnnn=0, nnnn=1 is assumed when skipping records.

The file where the tape is currently positioned is counted when you
attempt to advance over a number of files. Thus nnnn=1 means to
advance to the beginning of the next file. If nnnn is greater than 0,
the tape 1is positioned at the beginning of a file (just after a file
mark but before any data records). If nnnn=0, the tape advances to
the end of the file where currently positioned (before a file mark,
but after all data records).

If you encounter the end of data before you have skipped the specified
number of files, the warning message:

% CAN‘T - AT EOD

appears and the tape is positioned at the end of data. If a tape is
already positioned at the end of data, the SKIP command produces
meaningless results.

10.1.6 UNLOAD Command

The UNLOAD command rewinds a magnetic tape controller and turns it off
line. As the tape is rewinding, control returns to CAMP for another
command. You will have to manually turn the magnetic tape on line for
use after you have issued an UNLOAD command.

You may also use the UNLOAD command to unload TC08 and TD8E DECtapes
from their reels. When used on DECtapes, the UNLOAD command rewinds
the DECtape on the unit specified, selects a different unit, and
returns control to CAMP for another command. This DECtape unit cannot
be used until another legal command, e.g., the Keyboard Monitor ASSIGN
command, is issued to the DECtape controller.
You can also use the UNLOAD command to write-lock an RK8E disk.
The UNLOAD command form is:

#UNLOAD dev:
where "dev:" may be any one of the following:

magnetic tape

TC08 DECtape

TD8E DECtape
RK8E disk

10.1.7 VERSION Command

The VERSION command prints the version number of CAMP on the terminal.
This command form is:

#$VERSION

10-4

CASSETTE AND MAGNETIC TAPE POSITIONER (CAMP)

10.2 CAMP ERROR MESSAGE SUMMARY

The error messages listed in Table 10-1 may appear during a CAMP
operation.

Table 10-1
CAMP Error Messages

Messages Explanation

¥ CAN'T

AT BOF A file mark was read before the
specified number of records were
read over in a BACKSPACE command.
The device is moved forward so
that it 1is positioned at the
beginning of the file.

)

CAN'T - AT BOT A BACKSPACE command cannot move
the device backward the specified
number of files because the
device is positioned at the
beginning of the first file.

% CAN'T - AT EOD The specified number of files
cannot be advanced over because
the end of data was encountered.
The tape is positioned at the end
of data.

$ CAN'T -~ AT EOF A file mark was read before the
specified number of records were
advanced over in a SKIP command.
The tape is moved backward one
record to leave it positioned at
the end of the file.

LoV

CAN'T - DEVICE DOESN'T EXIST The device specified in a CAMP
command 1is not present on the
0S/8 system.

? CAN'T - DEVICE IS READ-ONLY The device specified in a CAMP
command is a read-only device,
e.g., PTR.

o

CAN'T - DEVICE IS WRITE-ONLY The device specified in a CAMP
command is a write-only device,
e.g., TTY.

o

CAN'T FOR THIS DEVICE The operation specified does not
make sense for the device
specified, e.g., REWIND LPT:.

LoV

CAN'T I/0 ERROR An input/output error has
occurred, and a brief explanation
will follow.

o

NUMBER TOO BIG The "nnnn" specified in a
BACKSPACE or SKIP command 1is
greater than 4095.

? SYNTAX ERROR An illegal character was typed in
a CAMP command or a command was
formatted incorrectly. The

command must be retyped.

10-5

CHAPTER 11

CROSS-REFERENCE PROGRAM (CREF)

CREF aids you in writing, debugging, and maintaining assembly language
programs by pinpointing all references to a particular symbol. CREF
operates on output from either the PAL8, SABR, or RALF assembler.

11.1 CALLING AND USING CREF
To call CREF from the system device, type
+R CREF

in response to the Keyboard Monitor dot. This 1loads the Command
Decoder, which replies by printing an asterisk in the left margin.
Enter one output file specification and one input file specification.

NOTE

The input to CREF must be the 1listing
pass output from either the PAL8, SABR,
or RALF assembler. 1If this is not the
case, CREF will not operate properly.
RALF is not fully supported by CREF.

If you specify no output file, CREF assumes you are sending the output
to the 1line printer. If you specify no input or output file
extension, the extension .LS is assumed. If you specify no input
file, control returns to the Command Decoder until an input file is
specified. The CREF version number is printed at the end of the CREF
table in the form Vn, where n is the current version number.

11.1.1 CREF Options

The following options are available to you. The option and the file
specification are placed in the command string.

11-1

CROSS-REFERENCE PROGRAM (CREF)

Table 11-1
CREF Options

Option Code Meaning

/P Disable pass 1 listing output. The output is
reenabled when $ (or END for SABRE) is
encountered. Thus the $ (END) and symbol table
are printed if you use the /P option.
Inoperable for RALF output.

/U Disable pass 1 listing output and the symbol
table. Inoperable for RALF output.

/R Interpret input as RALF code.

/Q Interpret input as SABR code. Signal CREF to

accept special SABR characters. If you use the
/Q option, the /X option is forced on.

/X Do not process literals. For programs with too
many symbols and literals for CREF, this option
may create enough space for CREF to operate.

/A Do not eliminate the file CREFLS.TM. If you do
not specify the /A option, and if CREF was
chained to from PAL8, the file CREFLS.TM is
eliminated.

/M Cross-reference mammoth files 1in two major
passes. Pass 1 processes the symbols from A
through LGnnnn; pass 2 processes the symbols
from LHnnnn through 2 and 1literals. This
permits significantly large files to be
cross-referenced. If the /M option is used, the
file CREF.SV must be on the system device.

11.1.2 Examples of CREF Usage

Examples of calling and using CREF are given below.

Example 1:

+R CREF

XFTEMF
The Command Decoder prints an *, CREF assigns LPT: as the output
device. The input file is PTEMP, assumed to be on device SYS, with

the extension .LS. If you do not find the file SYS:PTEMP.LS, a search
for SYS:PTEMP is attempted.

Example 2:

+R CREF
XSERLS/R

Given to the Command Decoder, this command string causes output to be

sent to the line printer. The input is expected to be a SABR listing
file named SBRLS.LS or SBRLS from device SYS:.

11-2

CROSS-REFERENCE PROGRAM (CREF)

Example 3:

+R CREF
XDTAL:LIST<DTA3:PALIST/X

This command string causes output to be sent to DECtape unit 1, as a
file named LIST.LS. Input is expected to be a PAL8 listing file
called PALIST.LS or PALIST. No literals appear in the CREF output
table.

Example 4:

+R CREF
ADTA2:LIST<SYS:BIGLST

The source listing, symbol table, and cross-reference of symbols in

the file BIGLST or BIGLST.LS on SYS is in the file LIST.LS on DTA2.
To list the CREF output you may now run PIP.SV as follows:

R PIF
ALFT:DTA2:LIST.LS

11.2 PSEUDO-OP HANDLING

The PAL8 and SABR assemblers have certain pseudo-ops that cause CREF
to perform actions similar to those taken by the assembler whose
output is being processed. These pseudo-ops are described below:

PAL8 Pseudo-Op Action Taken by CREF

EXPUNGE CREF purges its current symbol table of all
permanent and user-defined symbols. If any
literals were in the symbol table, they are
not deleted.

FIXTAB Causes all symbols (except 1literals) to be
marked as permanent symbols. After a FIXTAB,
no references will be reported by CREF.

TEXT Ignores characters between delimiters.

$ End-of-input signal.

11.3 INTERPRETING CREF OUTPUT

The output of CREF consists of two parts. On the first pass through
the input file CREF generates a seguentially numbered listing file.
The sequence numbers are decimal. The /P and /U options disable this
part of the output.

The cross-reference table appears after the 1listing. This table
contains every user-defined symbol and literal, sorted alphabetically.
An underline (or back—-arrow on most DEC terminals) indicates each
literal, and it is followed by the field and address where the literal
occurs. For each symbol and literal there appears a list of numbers
specifying the line in which each is referenced.

11-3

CROSS-REFERENCE PROGRAM (CREF)

If CREF finds too many references to fit into core at one time,’
multiple passes are reguired to process all symbols. The minimum
number of passes is two. The maximum number of passes depends on the
size of the 1input file and on the amount of core available. CREF
calculates the number of core fields available and uses all available
space for reference tables. If there is not enough core available,
three or more passes are required. For example, the current 0S/8 SABR
assembler (5518 source 1lines, 849 symbols) regquires four passes
through CREF on an 8K machine.

The following example illustrates a program that PAL8 has assembled
and CREF has listed. Form feeds on the terminal have been converted
to a series of carriage return/line feed combinations followed by a
dotted tear line. Notice the line in the CREF table where a # follows
the defined symbol. All literals and symbols defined by OPDEF or
SKPDF in SABR do not have a # following them.

/EXAMFLE FROGRAM

/ EXAMFLE FROGRAM FALB~-V?R 03/05,/74 FAGE 1
1 / EXAMFLE FROGRAM
2 4 ILLUSTRATING DETAILS OF LISTING FORMAT
3 4 USING FALS8 AND CREF
4 0200 %200
= 00200 7300 STARTs CLA CLL
b 00201 1207 TAD A /CURRENT PAGE SYMEOL
7 00202 1777° TAD R /0FF~FAGE SYMROL s LINN GENERATEL
a8 Q0203 1177 TAD L2 /FAGE ZERD LITERAL
? 00204 1376 TAaD (3 /CURRENT FAGE LITERAL
10 Q0205 3777° DCA LINK /0FF-FAGE SYMROLs LINN GENERATED
11 00206 56190 JMFP I ADDRF2 /USER CREATELD LINK
12 00207 0011 Ay 0011
13 00210 0400 ANDORF2, P2 /INODIRECT ADDRESS

14 Q0376 0003
9] 00377 0407

16 0400 %400

17 Q0400 1207 P2, TADR LINKN /FAGE 2 START

i8 Q0401 1377 TAD (3 /NOTE THAT THIS IS A NEW LITERAL

19 Q0402 1177 TAL L2 /NOTE THAT THIS IS SAME OLD LITERAL
20 00403 1377 TAD (3 /SAME AS CURRENT FPAGE LITERAL

21 Q0404 3207 ncA R /CURRENT FAGE SYMEOL

a2 Q00405 4213 CcoF CIF 10 /CHANGE FIELIDS

23 Q0406 T7767 JMF FLDL /0FF FAGE SYMEOL» LINKN GENERATED

24 00407 0000 LINKky o]

25 0407 E-L INK

26 00576 0200
27 00577 0003
28 00177 0002

29 Q001 FIELD 1

30 10200 1377 FLD1, TAD (3 /FIELD 1y DBEFAULT TO FAGE 1 %200

31 10201 1177 TAD L2 /NEW LITERALs BECAUSE IN FAGE O OF NEW FIELLD
32 10202 6203 CIF CDOF O /CHANGE FIELDS AGAIN

33 10203 5200 JMF START /NO LINKN GENERATED, SAME FAGE, OTHER FIFLI
34 10377 0003

39 $

36 10177 0002

11-4

CROSS-REFERENCE PROGRAM (CREF)

/ EXAMPLE FROGRAM FALB-V?E 03/05/74 FAGE 2
A 0207

ADDRF2 0210

R 0407

FLI1 0200

LINK 0407

F2 0400

START 0200

ERRORS LETECTED: O

LINKS GENERATED? 3

A
ADDRFP2
R

FLD1
LINK
P2
START
00177
~-00377
~00577
-10177
-10377

V3

6 12#

11 13%

7 21 25%
23 30#

10 17 24% 25
13 17#

oF 33

8 19

9

18 20

31
30

11.4 RESTRICTIONS

CREF has the following restrictions:

CREF can handle a maximum of 896 (decimal) symbols in one
major pass. (In 8K, PAL8 is limited to 897 symbols while SABR
is limited to fewer than 800 symbols.) If CREF finds more than
896 symbols, it generates an error message.

If any symbol in the input file has more than 2044 (decimal)
references, an error message appears.

If more than 8192 (decimal) source lines are input, seguence
numbers return to 4096, not 0.

If you use the /D option in PAL8 (to generate a DDT-compatible
symbol table) and you put the output listing through CREF, no
symbol table listing will appear.

Use of semicolons - This 1is a restriction that, when not
observed, could cause errors in the CREF table. You should
follow these suggestions when preparing source files in order
to insure a proper CREF listing. Do not use semicolons on
lines with pseudo-ops. In particular, do not use a
combination such as the following:

Xx3000
TEST #ZERRORYZ # TAD [A42

EXFR=0

11-5

CROSS-REFERENCE PROGRAM (CREF)

In this case, CREF does not process the page zero literal
properly. It generates a literal derived from the expanded
TEXT message. No error message dgenerates, but the literal
table entry 1is meaningless. As a general rule, do not use
semicolons as line terminators inside conditional assembly
brackets (<>). For example:

EXOR=0
IFNZRO EXOR<CLATAD B# HLT \ERRORX
\THIS IS THE NEXT LINE PAST IFNZRO

The conditional code is not assembled; but because CREF does
not realize this, it tries to process the bracketed
instructions. As a result of the semicolons, extra symbols
may be processed and some valid references missed. However,
if the code had been assembled CREF would operate properly.
There are two ways around this:

a. Write straight-line code:

EXOR=0

IFNZRO EXOR <
CLA

TAD B

HLT ERROR

o

b. Use XLIST around conditional code, 1in the preceding
example:

IFZERO EXOR <XLIST:>
IFNZRO EXOR <CLAFTAD B# HLT\ERROR>
IFZERO EXOR <XLIST>

XLIST turns off the listing, if the code does not assemble,
and turns it back on after the conditional code.

® Formats - There are several output formats you can use in
generating a PAL8 listing file:

/T Form feeds converted to carriage return/line feeds.
/H No heading or form feeds generated.
/D DDT-compatible symbol table is generated.

For best results with CREF, use none of these switches. This
generates a heading and form feed in the output. CREF
automatically converts form feeds to carriage return/line
feeds if output is to the terminal.

e PAL8-generated 1links are not recognized by CREF. CREF
processes only literals specifically generated with (and [.

11.5 CREF ERROR MESSAGES

CREF errors are nonrecoverable errors, and control returns to the
Keyboard Monitor through location 07605 (no core saved). Table 11-2
lists the error messages printed by CREF.

11-6

CROSS—-REFERENCE PROGRAM (CREF)

Table 11-2
CREF Error Messages

Error Message

Meaning

SYM OVERFLOW

ENTER FAILED

OUT DEV FULL

CLOSE FAILED
INPUT ERROR

DEV LPT BAD

2045 REFS

HANDLER FAIL

More than 896 (decimal) symbols and 1literals
were encountered during a major pass.

Entering an output file was
unsuccessful - possibly output was specified to
a read-only device.

The output device is full (directory devices
only).

CLOSE on output file failed.
A read from the input device failed.

The default output device, LPT, is not available
on this system.

More than 2044 (decimal) references to one
symbol were made.

This is a fatal error on output; it can occur
if either the system device or the selected
output device is WRITE-LOCKed.

11-7

CHAPTER 12

DIRECT

DIRECT is an 0S/8 program that produces 1listings of 0S§/8 device
directories. The directories produced vary depending upon the options
you specify in the DIRECT command line. The standard directory
listing consists of the following columns: file name, file name
extension, length (decimal) in blocks written, and creation date.

DIRECT supports the wild card construction, accepting * in place of
the file name or extension, or ? in place of a character. See the
FOTP chapter for a description of wild card construction.

12.1 CALLING AND USING DIRECT

To call DIRECT from the system device, type:
R DIRECT

in response to the Keyboard Monitor dot. You may also call DIRECT via
the CCL command DIR. The Command Decoder prints an asterisk in the
left margin, indicating it is ready to accept a line of I/0 files and
options. You can enter one output specification, and one to five
input specifications in a DIRECT command line. You may terminate the
I/0 command 1line with a carriage return (DIRECT retains control) or
with an ALTMODE (control returns to the Keyboard Monitor).

The output specification consists of a device upon which you can
produce the directory, a file name, and a file name extension. All
parts of the output specification are optional, as 1is the output
specification itself. You should specify a file name and extension if
you desire to save the directory for listing at a later time. If vyou
specify no output device, TTY is assumed. If you give a file name
without an extension, the extension .DI is assumed. The wild card ?
and * are not permitted in DIRECT output file names and extensions.

A DIRECT input specification consists of a device, an optional file

name, and an optional extension. The wild cards * and ? are

permitted in input specifications. If you specify an input device

with no file name or extension, *.* is assumed. DIRECT determines

which files have the form specified and prints a directory listing of
just those files.

NOTE
If you want to include the date in vyour

directory 1listing, vyou must enter it
first with the DATE command.

12-1

DIRECT

12.1.1 DIRECT Options

The following table lists the options you can use in a DIRECT 1I/0
specification 1line. Examples of the use of these options are shown
after Table 12-1.

Table 12-1
DIRECT Options

Option Meaning

/B Include the starting block numbers (octal) for
each file in the directory.

/C List only files with the current date, i.e., the
date entered with the most recent DATE command.

/E Include empty file spaces in the directory
listing.

/F List a short form of the directory, omitting

file lengths and dates.

/I List additional information words in octal,
other than the first that is listed as the date.

/L List the standard form of the directory,
including file name, eXxtension, length in
blocks, and creation date. The /L option is
assumed if none is specified.

/M List only the empty spaces in the directory.

=n Use n columns in the directory 1listing. This
option allows you to specify the number of
directory entries per line of output. The "n"
must be in the range 0 to 7. The =n option is
useful when a wide column printer, e.g., 132
columns, is being used.

/0 List only files with other than the current
date.
/R List the remainder of the files after the first

one found. This option causes DIRECT to find
the first file that matches the specifications
given and then 1list a directory that includes
the first matching file and all files that
follow it on the device. The /C and /O options
are still considered when listing these
remaining files. If /R and /V are used in the
same command, only the first file of the form
specified is listed.

/U Treat each input specification separately. The
/U option creates a separate directory listing
for each input specification.

/v List files not of the form specified.

/W Print the version number of DIRECT.

12-2

DIRECT

12.2 DIRECT EXAMPLES

The following are legal command strings to DIRECT and the resultant
DIRECT output. To facilitate understanding of the DIRECT options, the
same device (DTAOC) is used for each of the examples. The current date
is 21-JAN-74.

when DIRECT has completed an operation, control returns to the Command
Decoder for additional input.

Example 1:

This example shows a directory of all the files on DTAO, listed in two
columns on the terminal (TTY).

R DIRECT
XDTAOS =2
21-JAN-74

MTPALA.FA 1 18-JAN-74 WNTSTA.RA 1 18-JAN-74
MTFALB.FA 1 18-JAN-74 WNTSTE.BA 1 19-JAN-74
WNTSTC.RA 1 _19-JAN-74 WNFALALFA 1 _19-JAN-74
WNFFFA.FA 1 19-JAN-74 WNTSTOLBA 1 21-JAN-74
WNFALE.FA 1 21-JAN-74 MTFALC.FA 1 21-JAN-74
WNXX . BA 1 21-JAN-74 WNXY BA 1 21-JAN-74

718 FREE BLOCKS

Example 2:

This example shows all files that have a file name beginning with WN,

have any file extension, and do not have the current date. The
directory is listed in two columns on TTY.
XDTAQIWNTT?7.X/0=2
21-JAN-74
WNTSTA.EBA 1 18-JAN-74 WNTSTE.RBA 1 19-JAN-74
WNTSTC.RA 1 19-JAN-74 WNFPALA.FA 1 19-JAN-74
WNFFFA.FA 1 19-JAN-74
718 FREE BLOCKS
Example 3:
This example shows files that have any file name, have a .BA

extension, and have the current date. TTY lists the directory in a

single column.

XDTAO Ik .BA/C

21-JAN-74
WNTSTD.EBA 1 21-JAN-74
WNXX .BA 1 J1-JAN-74
WNXY . EBA 1 21-JAN-74

718 FREE_ BLOCKS

12-3

DIRECT

Example 4:

This example demonstrates the use of the /U option to produce separate
directories for each input specification. The command specifies that
all files beginning with WN and having .BA extensions appear first,
and that all files beginning with WN and having .PA extensions appear
next. The short form of the directory is to be 1listed on the line
printer (LPT) in three columns.

XLPT:<DTAQIWNT???,BAsWN???P.FA/F/U=3

21-JAN-74
WNTSTA.BA WNTSTH. BA WNTSTC.BA
WNTSTD.BA WNXX .BA WNXY .BA

718 FREE BLOCKS

21-JAN-74

WNFALA.FPA WNPPFPA.FPA WNFALE.PA

718 FREE BLOCKS

Example 5:
This example demonstrates the use of the /V option to print files not
of the specified form and the use of the /O option to exclude files

with the current date. TTY is to print in a single column all files
except those beginning with WN.

XDTAOTWN???? . X/0/V
21-JaN-74

MTPALA.FA 1 18-JAN-74
MTFALER.FA 1 18-.JAN-74

718 FREE BLOCKS

Example 6:

This example demonstrates the use of the /R option to list part of the
directory. DIRECT finds the first file that begins with WN and has a
.PA extension; that file and all files that follow are listed. TTY
lists the directory in two columns.

XDTAOIWN???? . FA/R=2

21-JAN-74
WNFALALFA 1 19-JAN-74 WNPFEALFA 1-19-JAN-74
WNISTD.RA 1 21-JAN-74 WHFALE.FA 1 21-JAN-74
MTFALC.FA 1 21-JAN-74 WH:X BA 1 21-JAN-74
WNXY JEA 1 21-JAN-74

718 FREE BiLOCKS

12-4

DIRECT

12.3 DIRECT ERROR MESSAGES

The following error messages may appear when running the DIRECT
program.

Table 12-2
DIRECT Error Messages

Message Meaning

BAD INPUT DIRECTORY This message occurs when the
input device has a bad directory,
e.g., the device is not an 05/8
device, or a DECtape has not been

zeroed.
DEVICE DOES NOT HAVE A The input device is a
DIRECTORY non-directory device, e.g., PTR.

DIRECT can only read directories
from file structured devices.

EQUALS OPTION BAD The =n option is not in the range
0-7.

ERROR CLOSING FILE System error.

ERROR READING INPUT An error occurred while reading

DIRECTORY the directory.

ERROR WRITING FILE An error occurred while writing

the output file.

ILLEGAL * An asterisk (*) was included in
the output file specification or
an illegal * was included in the
input file name.

ILLEGAL ? A question mark (?) was included
in the output file specification.
NO ROOM FOR OUTPUT FILE The output device does not have
sufficient space for the

directory to be written.

THERE IS NO HOPE - THERE IS NO
TTY HANDLER IN YOUR SYSTEM! A command was issued to print a
directory on the terminal when no
TTY handler 1is present on the
0S/8 system. Use BUILD to insert
a TTY handler in the system.

12-5

CHAPTER 13

DECTAPE COPY AND FORMAT PROGRAMS

The following programs enable you to format and copy DECtapes.

13.1 DTFRMT

This program records the required timing and mark tracks on a DECtape
mounted on the TC01-TU55 unit or a TC08-TU56 DECtape unit.

The program interacts with you via the terminal to obtain the
necessary data for each set of DECtapes to be formatted. As soon as
one set of tapes is formatted, the program is ready to format another
set.

Two full passes are required to completely format each DECtape, and up
to eight DECtapes may be formatted at a time (assuming that you have
eight tape transports). With a minimum of operator—-program
communication, you can mount and format new tapes in the same fashion
upon completion of a cycle. -

13.1.1 Loading Procedure

Load the program into core using the standard Binary Loader.

13.1.2 Using the Program

To start the program from the console, key 1000 into the SWITCH
REGISTER. Depress LOAD ADDRESS and depress START. DTA? 1is printed
on the terminal.

Mount the DECtapes to be marked onto the tape transports, with just
enough turns of tape on the right-hand reel of each transport to
provide a grip. Make sure that no two tape units are set to the same
unit number. Set the RDMK-WRTM-NORMAL switch located on the TCO1
maintenance control panel to the WRTM position. For each transport to
be used, set the WRITE ENABLED-WRITE LOCK switch to WRITE ENABLED, and
the REMOTE-OFF-LOCAL switch to REMOTE.

To run the program from the terminal, type:

R DTFRMT

in response to the Keyboard Monitor dot. You now converse with the
program. The printout:

DTA?

13-1

DECTAPE COPY AND FORMAT PROGRAMS

asks which DECtape units you are using. Type a unit number or series
of unit numbers, corresponding to the DECtape units with mounted
tapes. For instance, if you have mounted tapes on units 2, 5, 7, and
8, type 2 5 7 8 followed by a carriage return. Spaces are ignored, so
it makes no difference if you type spaces between the unit numbers.
Only one specification of a unit is significant, i.e., typing 2 2 5 7
7 5 8 2 8 has the same effect as typing 2 5 7 8.

Once you have specified the units you wish to use, the program types:

DIRECT?
Respond by typing:

MARK or MARK XXXX
If you type:

MARK
the program assumes 201(8) words, 2702(8) blocks (standard PDP-8
format). Otherwise, XXXX is accepted as a decimal number of words per
block, and must be divisible by 3. Note that typing MARK 384 will
cause the program to generate a standard PDP-10 format DECtape

(1102(8) blocks of 600(8) words, which is equivalent to 1102(8) blocks
of 200(8) words, where each word is 36 bits rather than 12 bits).

The program now types:
XXXX WORDS, YYYY BLOCKS OK? (YES OR NO)

This serves as a final check for block count. XXXX and YYYY are octal
values representing the final outcome of a formula solved by the
program. They determine the number of blocks you may write on a
DECtape, given a specified number of words. 1If you give a NO answer,
the program reverts to DIRECT?. If YES, the tape on the first unit
specified begins to move.

Once all of the tapes specified have been marked, the printout:

SET SWITCH TO NORMAL

appears. Return the RDMK-WRTM-NORMAL switch to NORMAL, and strike the
RETURN key on the terminal, starting the second pass. Note that
during the second pass with multiple DECtape units, as soon as one
tape stops and the next tape starts, the first tape is completed and
may be replaced with a fresh tape in preparation for recycling.

The program continues by itself until completed. Now the DIRECT?
printout occurs. Typing:

SAME

repeats the entire process with the original constants. The new
DECtapes must be mounted and ready to write timing and mark tracks
before you type SAME. Also, in response to DIRECT?, typing RDR causes
the printout of the unit numbers of the DECtapes and the last twelve
block numbers. RDF causes the printout of the unit numbers and the
first twelve block numbers. RESTART returns the program to DTA?.
Unit numbers are printed as N00OO, where N is the unit number (0 means
DECtape unit 8). Once formatting begins, control C will cause the
program to restart at DTA?. If you wish to return to the monitor,
type control C.

13-2

DECTAPE COPY AND FORMAT PROGRAMS

Following are several examples of successful operation. The program
prints the underlined portions. A carriage return should follow all

responses.
1. Create a

DTA?

standard tape on unit 4.

4

DIRECT? MARK

0201

WORDS, 2702 BLOCKS OK? YES OR _NO

YES

SET SWITCH TO NORMAL

DIRECT?

2. Create 16 standard PDP-10 format tapes - eight at a time, on
units 1-8.

DTAT

123454678

DIRECT? MARK 384

0600

WORDS, 1102 BLOCKS OR? YES OR NO

YES

SET SWITCH TO NORMAL (TYFE <CR*)

DIRECT? SAME

SET _SWITCH TO NORMAL (TYFE <CR>)
DIRECT?

13.1.3 Error Messages

Errors typed to DTA? and DIRECT? revert back to DTA? or DIRECT?

Error messages for response to MARK XXXX:

NOT DECIMAL

A character in XXXX is not 0-9.

NOT DIVISIBLE BY 3 XXXX cannot be divided evenly by 3.

TOO MANY WORDS The number of words plus 15 exceeds 7777(8).

TOO MANY BLOCKS The number of blocks generated by XXXX

exceeds 7777(8).

Error messages for response to YES (after message - revert back DTA?):

SETUP?

Indicates an error in the DECtape setup:

unit in WRITE-LOCK
nonselectable unit
switch not in WRTM position

Error messages for marking and verifying a tape:

XXXX SHOULD BE YYYY BLK ERROR PHASE X
XXXX SHOULD BE YYYY DATA ERROR PHASE X
END TAPE ERROR PHASE X

MARK TRACK ERROR PHASE X

PARITY ERROR PHASE X

SELECT ERROR PHASE X

TIMING ERROR PHASE X

LAST INT NOT END ZONE

Although an error message should cause doubt concerning

the

entire

process, you can restart by phases (except when in phase 0) by typing

RETRY<. Type RESTART< to return to DTA?.

13-3

DECTAPE COPY AND FORMAT PROGRAMS

PHASE 0: MARK TRACK WRITE

PHASE 1: WRITING LAST REVERSE BLOCK NUMBER FORWARD
PHASE 2: WRITING BLOCK NUMBERS AND DATA IN REVERSE
PHASE 3: READING AND CHECKING BLOCK NUMBERS AND DATA

The error message LAST INT NOT END 2ONE indicates an interrupt
occurred between the first or last block number and the end zone.

You can restart the entire program at 1000(8) any time.

13.1.4 Details of DTFRMT Operation and Storage

The program writes timing and mark tracks on a DECtape. It then
inserts block numbers and parity correct information, checking the
results of all operations.

The number of block frames the program writes is a function of the
number of words per block. The formula

212080
blocks per tape = — +2
NW+15

(where NW equals the number of words the program writes) 1is used by
the program to compute the number of blocks. But this number is
adjusted by the program to provide the standard PDP-8 format of 129
(12-bit) words, 1744 blocks, and standard PDP-10 format of 128
(36-bit) words, 578 blocks.

Two full passes are required to mark and verify a tape.

Pass 1 Marks the jtape forward, inserts block numbers and
parity correct date in reverse.

Pass 2 Reads and checks block numbers and data forward and
reverse.

During the forward direction of the first pass, the TCO0l switches into
WRITE TIMING AND MARK TRACKS, CONTINUOUS MODE, FORWARD. The program
manipulates data it is writing by monitoring the word count register
and the DTF, (DECtape flag). 1Initially, the program writes ten feet
of end-zone code, and abutting the end zone are about two standard
block 1lengths of interblock sync. To the TCO0l, this interblock sync
acts as no operation, but guarantees that at turn-around time, block 0
is read first (or 2701 if turning out of the forward end zone). Now
the program writes the remainder of the tape, creating block frames.
The formula above determines the number of such frames. Upon
completion of the block framing, another extended interblock sync zone
is written, as well as ten feet of end zone.

Pass 1 forward is now complete (timing and mark tracks are written).
The program orders the tape to MOVE in reverse for three seconds, thus
moving it out of the end zone and onto the marked section. The tape
once again moves forward, and the program writes the last REVERSE
BLOCK NUMBER until it senses the forward end zone. The tape now turns
out of the end =zone in SEARCH, and the program waits for a block
interrupt (first reverse block number). When the DTF rises, the TC01
switches into WRITE ALL, CONTINUOUS, REVERSE. Thus DTFRMT
synchronizes the system and writes all block numbers and data, until
the forward end zone 1is sensed. This completes the marking and
blocking of the tape. Pass 2 in CONTINUOUS MODE checks the data and
block numbers to be certain they are correct. When you specify
multiple DECtape units, Pass 1 forward ends for each tape before Pass
1 reverse begins.

13-4

DECTAPE COPY AND FORMAT PROGRAMS

13.2 TDFRMT

The TD8-E DECtape formatter program records the timing and mark tracks
on a DECtape mounted on the TU56 DECtape transport.

TDFRMT interacts with you via the terminal to obtain the necessary
data for each set of PDECtapes the program will format. As soon as one
set of tapes is formatted, the program is ready to format another set.

The program requires three full passes to completely format each
DECtape, and it can format up to two DECtapes at a time (units 0 and
1). Upon completion of a cycle, the program can mount and format new
tapes in the same way, with a minimum of operator-program
communication. Excluding tape setup time, the program formats one
tape in three minutes from start to finish.

Mount the DECtapes to be marked onto the tape transports with just
enough turns of tape on the right-hand reel of each transport to
provide a grip. Make sure that no two tape units are set to the same
unit number. Set the switch on the TD8-E to WTM position. For each
transport you are using, set the WRITE ENABLED-WRITE-LOCK switch to
WRITE ENABLED, and the REMOTE-OFF-LOCAL switch to REMOTE.

13.2.1 Operating Procedures
Type:
R TDFRMT

in response to the Keyboard Monitor dot. ,You are now set to converse
with the program. The printout:

UNIT?

asks which DECtape units you are using. Type one or two unit numbers
corresponding to the DECtape units with mounted tapes. For instance,
if you have mounted tapes on units 0 and 1, type 0 1. Spaces are
ignored, so it makes no difference if you type spaces between the unit
numbers. Only one specification of a unit 1is significant, i.e.,
typing 000111 has the same effect as typing 0l.

Once you have specified the unit(s) you wish to wuse, the program
types:

FORMAT?
Respond by typing:

MARK or MARK XXXX
If you type:

MARK
the program assumes 201 words, 2702 blocks (standard PDP-8 format).
Otherwise the program accepts XXXX as a decimal number of words per
block that must be divisible by 3. Note that typing MARK 384 will
cause the program to generate standard PDP-10 format DECtapes (1102(8)

blocks of 600 words, which is equivalent to 1102(8) blocks of 200
words, where each word is 36 bits rather than 12 bits).

13-5

DECTAPE COPY AND FORMAT PROGRAMS

The program now types:
XXXX WORDS, YYYY BLOCKS OK? (YES OR NO)

This serves as a final check for block count. XXXX and YYYY are octal
values representing the final outcome of a formula solved by the
program. This determines the number of blocks the program can write
on DECtape, given a specified number of words. If you give a NO
answer, the program reverts to FORMAT?. If YES, the program types out
SET SWITCH TO WTM. Hit carriage return on the teletype and the tape
on the first unit specified begins to move, if you have set the
switch.

Once the program has marked all of the specified tapes, the printout
SET SWITCH TO OFF appears. Reset the WIM switch to off, and strike
the return key on the terminal, starting the second pass. Note that
during the second pass with multiple DECtape units, as soon as one
tape stops and the next tape starts, the first tape is completed. You
may replace it with a fresh tape in preparation for recycling.

The program continues by itself until it is completed. At this point
the FORMAT printout occurs. Typing:

SAME-

repeats the entire process with the original constants. Make sure you
have mounted the new DECtapes before you type a carriage return in
response to the message SET SWITCH TO WIM. The tapes should be ready
to write timing and mark tracks. Also, in response to DIRECT?, typing
RDR causes the printout of the unit number of the DECtape and the last
22 block numbers. RDF< causes the printout of the unit number and the
first 22 block numbers. RESTART< returns the program to UNIT?. Unit
numbers are printed as 000N, where N is the unit number.

Following are several examples of successful operations. The program
prints the underlined portions. A carriage return should follow all
responses.

1. Create a standard PDP-8 tape on unit 1.

UNIT? 1

FURMAT? MARK

00201 WORDSy 2702 BLOCKSs OK? (YES OR NO)
YES

SET SWITCH TO WTM

SET SWITCH TO OFF

FORMAT?

2. Create four standard PDP-10 format tapes, two at a time on
units 011.

UNIT? 01

FORMAT? MARK 384

0600 WORDS, 1102 BLOCKS OK? (YES OR_NO)
YFS

SET SWITCH TO WTM

SET SWITCH TO OFF

FORMAT? SAME

SET SWITCH TO WTM

SET SWITCH TO OHF

FORMAT?

13-6

DECTAPE COPY AND FORMAT PROGRAMS

13.2.2 Error Messages
Errors typed to UNIT and FORMAT revert back to UNIT? or FORMAT?.
Error messages for response to MARK XXXX:

NOT DECIMAL A character in XXXX is not 0-9

NOT DIVISIBLE BY 3 XXXX cannot be divided evenly by 3

TOO MANY WORDS The number of words plus 15 exceeds 7777(8)

TOO MANY BLOCKS The number of blocks generated by XXXX
exceeds 7777

Error messages for response to SET SWITCH TO WTM:

SETUP?
Indicates an error in the DECtape setup. One of
the units specified is in write-lock position, not
selected, or the write flip-flop is unable to be
set, or there may be a timing error. (After
message revert back to UNIT.)

Switch not set to WIM or single-line flag failed to set.
Set switch to WTM.

This typeout says that either the switch on the
M868 modules is not set to the WTM position or the
timing generator for writing the mark and timing
tracks is not setting the single-line flag.

RECOVERY:
If you did not set the switch to WIM position, set
the switch and hit carriage return on the
teletype.

If the switch was set to WTM position and this
type out occurred, try again or examine the timing
generator circuit.

Error messages for marking and verifying a tape:

PC XXXX MARK TRACK ERROR PHASE Y
PC XXXX BLOCK NUMBER ERROR PHASE Y
PC XXXX DATA ERROR PHASE Y

PC XXXX CHECKSUM ERROR PHASE Y

PC XXXX TIMING ERROR PHASE Y

PC XXXX WRITE ERROR PHASE Y

XXXX equals the program counter at time of the failure. Y equals the
number of the pass involved.

Although an error message should cause doubt concerning the entire
process, you can restart the phase (except in phase 0) by typing
RETRY<. Type RESTART< to return to UNIT?.

PHASE 0: WRITE TIMING AND MARK TRACK FORWARD

PHASE 1: READS MARK TRACK REVERSE

PHASE 2: WRITE DATA, FORWARD BLOCK AND REVERSE BLOCK NUMBERS
FORWARD AND WRITES THE CHECKSUMS

13-7

DECTAPE COPY AND FORMAT PROGRAMS

PHASE 3: DISPLAYS BLOCK NUMBERS IN AC REVERSE

PHASE 4: READS DATA, FORWARD BLOCK AND REVERSE BLOCK NUMBERS
FORWARD AND CALCULATES THE CHECKSUM

PHASE 5: READS REVERSE BLOCK NUMBERS IN REVERSE

You can restart the entire program at 0200 any time.

13.2.3 Details of TDFRMT Operation and Storage

The program writes timing and mark track in a forward direction on a
DECtape with the WTM switch set. Then it reads the mark track in the
reverse direction with the switch set to off. The program checks all
of the mark track once it is in sync. When it finishes reading the
mark track reverse, it bounces off the end zone and starts writing
zeroes to the first block mark. The program is now in sync.

The program now continues writing forward block numbers, reverse
checksum, data, checksum, and reverse block numbers for the rest of
the tape. When it sees the end zone, it turns around. It starts
displaying the reverse block number in the accumulator until it hits
the end zone again.

At this point the tape turns around and starts reading and comparing
all forward block numbers; reverse checksum; all data, checksum, and
reverse block numbers that were written in Phase 2. This comparison
is made on all blocks until the end zone is reached. The tape turns
around in the end zone and starts looking for reverse block numbers
and comparing them all the way down the tape to the end zone. The
formatting is now complete, the tape stops, and FORMAT is typed out
waiting for new directions.

The number of block frames to be written is a function of the number
of words per block.

The program uses the formula
BLOCKS PER TAPE [(212080) /(NW+15)] +2

(where NW equals the number of words to be written) to compute the
number of blocks, but it is adjusted by the program to provide the
standard PDP-8 format of 129(10) (12-bit) words, 1474(10) blocks, and
standard PDP-10 format of 128(10) (36-bit) words, 578(10) blocks.

The writing of the mark track is done through AC bits 0, 3, 6, and 9.
The following description shows how the program writes the mark track.

l. TInstall the tape with enough turns to create a pull. The
reverse end zohe requires a sequence of three data words for
its pattern.

4044

0440
4404

In the mark track the words appear at 101101101101101

(5555(8)) . The reverse end zone should cover about 10 feet
of tape. Write the above three words 4096 (10) times.

2. Write the three words in point 3, or expand code 99 times.

13-8

DECTAPE COPY AND FORMAT PROGRAMS

Expand code, three words of expand code should immediately
follow each block.

0404
0404
0404

In the mark track the words appear as 010101010101 (2525(8)).

The forward block mark and reverse guard require three words.

0404
4004
4040

which appear on the mark track as 010110011010 (2632(8)).

The lock mark, reverse checksum, reverse final, reverse
prefinal consist of six PDP-8 memory words.

0040
0000
4000
0040
0000
4000

These words appear on the mark track as
001000001000001000001000 (10101010(8)).

Mark track code for data is generated by

4440
0044
4000

These three words appear as 111000111000 (7070(8)) and are
repeated 41(10) times for a 129-word block.

The prefinal, final, checksum, and reverse lock consist of
six PDP-8 words.

4440
4444
4044
4440
4444
4044

These words appear on the mark track as
111011111011111011111011 (73737373(8)).

The guard and reverse block mark consist of three words
4040
0440
0404

which appear as 101001100101 (5145(8)).

Generate 2702 (8) block patterns. Repeat 3 through 8 2702(8)
times.

13-9

DECTAPE COPY AND FORMAT PROGRAMS

10. 100 expand codes (see 3).
11. The end zone pattern consists of three words,

0400
4004
0040

which appears on the mark track as 010010010010 (2222(8)).
Repeat these three words 4096 (10) times.

13.3 DTCOPY

A dialog on the terminal controls the TC0l1, TC08, and TU-55 Copy
Program. Your responses to the questions are in the form of octal
numbers followed by a carriage return. Separate the answers with
semicolons when more than one 1is required. Alphabetic or other
illegal characters will cause an error message to be generated and the
question to be repeated. 1If you type too many digits for the expected
response, only the last ones typed will be used. If the response was
to be either 0 or 1 (YES or NO), a non-zero final digit will be
assumed to be 1.

Before answering the dialog's guestions, you should make sure that all
the DECtapes involved are mounted on their respective drives and all
drives set to REMOTE. You may set the input drive to WRITE-LOCK or
WRITE ENABLE; all output drives must be set to WRITE ENABLE. No two
drives may have the same unit number.

Type:
+R DTCOFY
in response to the Keyboard Monitor dot. The program prints:

DECtare COFY V10A

For each set of copies, the dialog is as follows:

LDECTAFE COFY V10A
FROM UNIT O

TO UNIT 2

FIRST BLOCK TO COFY (OCTAL) 0

FINAL ELOCK TO COFPY (OCTAL) 700

FOF-8 WORDS FER BLOCK 0201

VERIFY OUTFUT? (O=YESy 1=N0O): O

When all specified copies have been finished, the tapes are rewound
and the dialog continues:

THINE.
DECTAFE COFY Vi0A
FEOM UNIT

You may return to the monitor by typing CTRL/C at any time. (Control
characters are not echo printed.)

13-10

DECTAPE COPY AND FORMAT PROGRAMS

13.3.1 Error Messages

DTCOPY produces the following error messages:

ILLEGAL RESPONSE

SELECT ERROR UNIT n

Your response to the dialog was not correct;
for exarnple, an alphabetic character was
typed or carriage return was typed before an
octal number was given. The question will be
restated and any previous answer ignored.
Type nothing until the terminal has stopped
printing.

During attempted data transfer, unit n was
not found. The program waits for you to
correct the cause of the error. You should
check to see that:

1. when unit n is an output drive, it is
set to WRITE ENABLE.

2. unit n is set to REMOTE.

3. there is only one unit n.

4. all units are set to numbers
appropriate to their TD8E internal
wiring.

When you have corrected the cause of the
error, you may type CTRL/R to resume transfer
or type CTRL/S to restart the dialog.

TAPE ERROR BLOCK x UNIT n

puring attempted transfer, a parity error or
timing error was detected, or too great a
block number was requested near block x on
the tape on unit n. The tapes are rewound
and the dialog is automatically restarted at
DONE, REPEAT (YES=1l, NO=0).

VERIFY ERROR BLOCK x UNIT n

ILLEGAL FORMAT UNIT

The data on the input tape does not match the
data that was written on block x of the
output tape on unit n. You may type CTRL/R
to 1ignore the error and continue with the
transfer, CTRL/T to try the last transfer
again and continue 1if the error does not
recur, or CTRL/S to restart the dialog.

n

Indicates one of two situations: Either the
number of words per block on unit n does not
agree with the number of words per block on
the input unit; or, when the number of
blocks on the tape was calculated from the
block 1length of the input tape, the length
was found to be 1illegal. The number of
blocks 1is only calculated if you request the
whole tape copy option. 1In either case, when
the error has been corrected, you may type
CTRL/R to check the formats of all tapes
again and continue, or CTRL/S to restart the
dialog.

13-11

DECTAPE COPY AND FORMAT PROGRAMS

13.4 TDCOPY

A dialog on the terminal controls TD83 Copy. Your responses to the
questions are in the form of octal numbers followed by a carriage
return. Separate the answers with semicolons when more than one is
required. Alphabetic or other illegal characters will cause an error
message to be generated and the question to be repeated. If you type
too many digits for the expected response, only the last ones typed
will be used. If the response was to be either 0 or 1 (YES or NO), a
non-zero final digit will be assumed to be 1.

Before answering the dialog's questions, make sure that all the
DECtapes involved are mounted on their respective drives and all the
drives set to REMOTE. You may set the input drive to WRITE-LOCK or
WRITE ENABLE; all output drives must be set to WRITE ENABLE. No two
drives may have the same unit number.

Type:
R TDCOFY
in response to the Keyboard Monitor dot. The program prints:

TDBE COFY V4A
HIGHEST FIELD AVAILARLE?

Respond with the number of the highest field you want used for buffer
space. This response may allow data to be preserved in any higher
field or may make full use of the available memory. This question is
asked only once: immediately after you have loaded the program. To
change the response, you must execute the program again. If you want
to use 4K of memory, respond with a 0; if 8K, respond with a 1, and
so forth.

For each set of copies, the dialog is as follows:

Dialog Comments
FROM UNIT: O You may specify one unit number.
TO UNITS? 1525354555637 You may specify up to seven unit

numbers, separated by semicolons.

FIRST INFUT BLOCK: 100 You may supply any legal DECtape
block number.

FIRST OUTFUT EBLOCK: 200 You may supply any 1legal DECtape
block number.

NUMBER OF BLOCKS TO COFY: 50 You may supply appropriate number
of blocks.

VERIFY OUTFUT (YES=1y NO=0)?! 1

0201 12-RIT WORDS FER BLOCK Determined by program from tape on
input unit.

The program checks the block length of all the specified tapes. If
any are found to be different from the input tape, the ILLEGAL FORMAT
UNIT n error message is generated.

13-12

DECTAPE COPY AND FORMAT PROGRAMS

When the program has finished all specified copies, it rewinds the
tapes and the dialog continues:

DONE

REPEAT (YES=1, NO=0):

If you want to copy more tapes with the same set of specifications,
you should place them on the drives before typing 1 to repeat the
previous operation. If you desire a different set of specifications,
type 0 to restart the dialog.

Occasionally a TD8E drive will not stop fast enough after the tapes
have rewound, causing the end of the tape to spin off the reel. 1If
this should happen, you can set the drive to OFF and stop the reel by
hand. This will not affect the validity of the copy. If the dialog
does not continue properly after one or more tapes have spun off, you
can restart the program.

In response to any question in the dialog, type CTRL/S to restart the
dialog at REPEAT (YES=1, NO=0) or CTRL/C to exit the monitor. You may
also type either CTRL/S or CTRL/C during a small amount of further
motion. If you type CTRL/S during the dialog, you answer NO to the
REPEAT question; this option is mainly for cases where a complete set
of specifications is already available.

A unique component in the dialog allows you to copy the entire input
tape onto the output tape with a minimum of effort. This feature
eliminates the need to specify the starting block numbers and number
of blocks to copy. 1In this case, the answer to FIRST INPUT BLOCK: is
only a carriage return. The shortened dialog is as follows:

TDSE_COFY

FROM_UNIT: ©

TO UNITS?: 1523354555657

FIRST INFUT BLOCK:

VERIFY OUTPUT (YFS=1, NO=0): 1
0201 12-EIT _WORI": FER BLOCN

The preceding sample dialog will cause the entire tape on unit 0 to be
copied onto the other seven tapes and verified.

13.4.1 Error Messages
TDCOPY produces the following error messages:

ILLEGAL RESPONSE
Your response to the dialog was
improper; for example, you typed an
alphabetic character or carriage return
before a required octal number. The
questions will be restated and any
previous answer 1ignored. Type nothing
until the terminal has stopped printing.

13-13

DECTAPE COPY AND FORMAT PROGRAMS

SELECT ERROR UNIT n

TAPE ERROR BLOCK x UNIT n

During attempted data transfer, unit n
was not found. The program waits for
you to correct the cause of the error.
Check to see that:

1. when unit n is an output drive,
it is set to WRITE ENABLE.

2. unit n is set to REMOTE.

3. there is only one unit n.

4. all units are set to numbers
appropriate to their TD8E
internal wiring.

When you have corrected the cause of the
error, type CTRL/R to resume transfer or
CTRL/S to restart the dialog.

During attempted transfer, a parity
error or timing error was detected, or
too great a block number was regquested
near block x on the tape on unit n. The
tapes are rewound and the dialog
automatically restarts at DONE, REPEAT
(YES=1, NO=0).

VERIFY ERROR BLOCK x UNIT n

ILLEGAL FORMAT UNIT n

The data on the input tape does not
match the data written on the block x of
the output tape on unit n.

Type CTRL/R to ignore the error and
continue with the transfer, CTRL/T to
try the last transfer again and continue
if the error does not recur, or CTRL/S
to restart the dialog.

Indicates one of two situations: Either
the number of words per block on unit n
does not agree with the number of words
per block on the input unit; or when
the program calculated the number of
blocks on the tape from the block length
of the input tape, the length was found
to be illegal. The number of blocks is
calculated only if you request the whole
tape copy option. 1In either case, when
the error has been corrected, type
CTRL/R to check the formats of all tapes
again and continue, or CTRL/S to restart
the dialog.

13-14

DECTAPE COPY AND FORMAT PROGRAMS

13.4.2 Details of Operation

After the answers to the dialog have been stored, use the following
procedure:

1. The number of words per block is determined from the input
tape. All output tapes are checked to see if they have the
same format as the input tape. If you used the shortened
dialog option, the number of blocks on the tape is determined
using the formula:

4 of blocks = (636,160/(words per block + 17)) + 2 (octal)
or
of blocks = (212,080/(words per block + 15)) + 2 (decimal)

2. The response to the VERIFY gquestion is checked. The copying
loop is set up to verify or not, as was requested.

3. The loop that copies the input tape is entered, using the
same set of specifications for each output tape.

a. The buffers are filled from the input tape.

b. All output tapes are written with the contents of the
buffers.

c¢. If verification was requested, a separate set of
buffers 1is filled from the output tape and the two
sets of buffers are compared. If there are any
discrepancies a VERIFY ERROR has occurred.

d. If more blocks remain to be copied, the loop is
entered again.

4. When all the specified blocks have been copied onto the
output tapes, all the tapes are rewound.

5. The REPEAT option is offered.

The number of fields to be used for buffer space is determined
immediately after loading. As soon as you have answered the guestion,
it is removed from the program.

If you verify the output tape, each available field, 1including that
part of field 0 not occupied by the program, is divided in half. The
lower half is used as the input and output buffer; the upper half is
used for verification. The output tape is read back into the upper
half and the two halves are compared. If they are not identical, a
VERIFY ERROR has occurred.

13-15

CHAPTER 14

DUMP

The DUMP handler is a new 0S/8 2-page handler that obtains blocks of
binary data on file-structured devices and sends them to the LP08 line
printer to produce a listing. This listing is called a DUMP.

Format:

.COPY DUMP:<dev:filename.ex

or

.R PIP

*DUMP: <dev:filename.ex/I
Example:

COFY DUMPI<SYSIFL2

After typing the command line, followed by a carriage return, type the
initial block number of the area in the specified file you want
dumped. This automatically dumps block number 0000 of the file. In
addition, the DUMP routine skips to the block number specified and
dumps it and any block numbers greater than it.

Because the DUMP handler contains a routine that interacts with the
keyboard monitor, you can change the block number previously entered
by typing a new block number on the keyboard. When you type a new
block number, the current block number is dumped before the new block
number takes effect.

If you enter a carriage return after the command 1line and do not
supply a block number, the DUMP handler starts at block number 0000 of
the file and dumps all the remaining block numbers in the specified
file.

Each block of data (2 memory pages) sent to the LP08 1line printer
results in a printed page of data followed by a form feed. If an
uneven number of pages is sent to the line printer during the DUMP
operation, the odd numbered page printed on the line printer will show
only half a block (one memory page) of data.

If you type an illegal character (excluding 0-7, carriage return, and
CTRL/C) while entering the block number, a guestion mark (?) echoes on
the terminal. Any digits typed before it are ignored, and you can
type in a new block number. If you type CTRL/C while the DUMP handler
is running, control returns to the keyboard monitor.

In addition to the CCL format shown using the COPY command, there is a

-D option. When specified, this option forces the output device to be
DUMP:. You can use this option with any CCL command.

14-1

DUMP

14.1 FORM FEEDS

A form feed on the LP08 line printer occurs before block 0 data is
sent to the handler and after the handler is called to do a close
(page count of 0).

14.2 ADDING THE DUMP HANDLER TO YOUR SYSTEM

You can add the DUMP handler to your system through the BUILD program.
Its group name, as well as its entry point name, is DUMP; and the
current version of the handler is A. This handler does not directly
interact with the keyboard monitor, but rather contains a routine that
performs that function. It is a 2-page handler and it has no
coresident handler. The keyboard monitor runs completely overlapped
with the LP08 handler.

14.3 FORMAT OF THE DUMP

The top left of every printed page in the DUMP listing has a 4-digit
octal number. This number is the relative file block number of the
data that is printed on that page. The first column of 4-digit octal
numbers represents 1line numbers. Each line number is followed by a
slash (/), which distinguishes the 1line number from the remaining
eight columns. The remaining eight columns represent the actual data
words located within a specific block in a file. The next column
containing 16 characters is a representation of the eight data words
on that line. Two 6-bit characters are packed in one word (that is,
two ASCII characters represent each data word).

The last column containing 12 characters is another representation of
the eight data words on that line. Three 8-bit characters are packed
in two words; that is, every two data words are represented by three
ASCII characters. Some of the spaces in this column could represent
non-printable characters. Any character that is not on the 1line
printer can be referred to as a non-printable character.

The following listing is an example of a single printed page from a
DUMP listing.

14-2

0000/
0001/
0002/
0003/
0004/
0005/
0006/
0007/
0010/
0011/
0012/
0013/
0014/
0015/
0016/
0017/
0020/
0021/
0022/
0023/
0024/
0025/
0026/
0027/
0030/
0031/
0032/
0033/
0034/
0035/
0036/
0037/

7733
1501
7767
0502
0215
7777

2001
7762

1601
7777

1501
77717

2001
7776
1520
2320
7762
1520
2001
7776
0363
1320
7744
5654
0300
1501
7666

2213
6264
1420
1404
6314
0662

6304
0663

6314
0362

6314
2263

6324
2266

6334
0425
6500
6324
1501
6500
6354

6300
6264
1234
7235

7653
2326
2326
7776

1501
7761

1521
7777

1501
7777

1501
7762
8070
0216
7774
1520
0216
7762
0363
2001
7775
7252
7271
0216
7777

7241

1720
1322

6354
0681

6314
2425

6314
0361

6314
2261

6314
0425
1623
6324
0425

6354
0425
6500
6354
1501
1501
6300
6264
7252
7235
2422

7777
0506
0216
7737

1501
7777
1520
1501
7777

1501
7777

1501
7777
1520
0216
7776
1520
2001
7776
1520
0216
7400
0363
0363
0001
7767
72717
7241

1322
6300
8304
0425

6314
0425
6200
6314
0363

6314
2262

6314
0425
6300
6324
0425
6500
6354
0425
6500
6354
0617
6500
6500
6264
3000
7304
2422
7235

DUMP

0506
2202
7777
1520
1501
7777
1520
2001
7777

1501
1771

1501
7777
1520
0216
7777
1520
2001
7761
1520
0216
7735
1700
1520
1423
7653

7440

7666
7241

14-3

6300
6264
2213

6314
0664

6314
0665

6314
0364

6314
0365
6300
6324
0425

6334
0425

6334
1501

6354
6354
1322

5300
1234
2422

7[KK@@OP??’KREF3@
MA24>+KREF3@R824
77LPSV@@BN3D?7RK
EBLDSV3,” DUMP@@
BN3L?>F1@@@EMA3L
17F2@@@EMA3L7F4
@@@EMA3L7?DUMP@@
PA3D?1DUMP2@PA3L
72F 3@@@E@MA3LYFS
@@@EMA3LC3QReR
MA3L?C1@@@EMA3L
7C2@@@EMA 3LC4
@REEMA3LNR2CEEE
MA3L?’R1@@E@MA3L
7K3@@@@MA3L?7C5
@@@@EMA3L?DUMP3@
PA3T?72DUMP3@BN3T
7>RFOSNSBN3T?7DU
MP4@BN3T?>DUMP@@
SV3\?<DUMPS@PA3\
22DUMP6@PA3,?1DU
MP6@BN3,”>DUMP4@
PA3T?72DUMP5@BN3\
7>MAC35@BN3,7]MA
C35@PA3 <@FO0REE@
MP3,7=MAC35@MP3,
25@@ *MAC35@LS3,
2,@@ 93@PA24>+KR
EF3@BN2417X@Q@EE
MA2477 * 9:D< +@
>6N\@.]-'TR>61\

@] 'TR@]:'TR

[P RFe@
A4<+R F@ 4L
venp
B VL PO
L 1 AL
2 A< 4
ALK PO
DL P <LL
3 A5
AL<
AL< AL<
AL<
AL< 2

AL< 1

3 A<

AL< P@<
Pe< T

8CT

P=T PO

VWL P@= \L
P= L

AL

TL

A * 7D @
6 U

! '

CHAPTER 15

EPIC

EPIC, the Edit, Punch and Compare utility program for 0S/8, performs
the following functions:

® Read and punch tape files and patches
e Edit arbitrary files
e Compare files in any format

These functions are discussed in the next few pages. The discussion
assumes you have an elementary knowledge of 0S/8.

15.1 LOADING EPIC
To load the EPIC program, type:
_+R EFIC
in response to the Keyboard Monitor dot. Specify the EPIC function
you want by including one of the following numeric options in the file

command line:

0 paper tape

_+R EFIC
1 edit
_XTRANS.AS</0% 2 compare
punch the file TRANS stored on
SYS.
+R EFIC
- fetch FILEA from DTAl for
XDTAL1IFILEA.SV/1% editing
compare file ABC on the disk
_+R EFIC with file XYZ on DTAl and
output block numbers and
XDOSKIARC,. SV-DIITALIXYZ,.SV/2% locations of each non-match on

the Teletype.

After you have included one of these numeric options in a command, you
do not have to specify it again in subsequent sequential commands
requiring the same option. Specifying the number puts EPIC in a mode
in which it remains until another number is specified. Initially,
EPIC is set to option 0. You use the character ALTMODE, which appears
as a §$ on the terminal, to end a command that includes a numeric
option.

15-1

EPIC

15.2 RESTART PROCEDURE

You can restart EPIC at location 0200. Default options remain active.
The default options are discussed later in this section.

15.3 PAPER TAPE FACILITY

EPIC's paper tape option (/0) punches 0S/8 files and file patches onto
paper tape, and creates 0S/8 files from paper tapes. Whole files or
patches (blocks) of files can be read or punched. Parity checks are
punched to ensure accurate reads. Because of the paper tape format

used, tapes must be both punched and read by EPIC. A file punched by
PIP, for example, is not acceptable to EPIC.

15.4 COMMAND FORMAT
To request the paper tape facility, specify option 0. Your response
to the command decoder's * determines whether a tape is to be punched
or read. 1In both cases, no input files or devices are specified. To
punch a tape, specify the file name; to read a tape, you need not
enter a file name (that information is encoded on the paper tape).
The command line specifying the mode of EPIC is terminated by ALTMODE.
To punch a tape, respond with:

*dev:name</0/other options$
To read a tape, respond with:

*dev:</0/other options$
If a file name is specified, EPIC looks up the name on the specified
device and punches the file (including the file name) onto paper tape.
If no file name is specified, EPIC reads in a paper tape and enters it
onto the output device under the name it read in from the tape.
The other options for handling paper tape are:

/L Use low speed paper tape reader or punch

/E Do not punch end of tape upon completion

/P Punch or read a patch (instead of the whole file)

/2 Set relative block to 0

/=n Punch relative block n

/Y Clear default name
You can combine these options to achieve the desired results:

/L If the /L option is not specified, EPIC assumes a

high-speed paper tape device. Thus, SYS:</0 means
read a tape from the high-speed reader to device

SYS, but SYS:</0/L means read it from the
low—-speed device.

15-2

EPIC

/E The /E option can be used to punch a series of
patches to a file for all patches except the last
one. With the /E option the end of tape mark is
not punched. The end of tape must have the "end
of tape" punch, a 377 punch and a 1length of
leader/trailer tape.

/P The /P option is required to indicate the tape to
be read or punched is a patch, not an entire file.
Generally, the command regquired to read in a patch
is simply dev:</P. File name and block
specification are already punched on the tape.

Option /Z or =n must be used with the /P option to
indicate punching block 0 or some other block
(relative block n), respectively. The patch is
read on top of an existing file on the specified
output device, that is, modifying an old file, not
creating a new one.

/Y The /Y option is used to clear the default file
name when switching from punching to reading paper
tape and when reading more than one paper tape.

15.5 DEFAULT OPTIONS

Throughout EPIC, if you do not specify options, files, or devices, the
program defaults to the last such item specified. There is an initial
default device: SYS is assumed if no output device is specified. No
options are assumed initially, except for relative block 0. Note that
device and file name options carry between EPIC modes 0, 1 and 2.
Specifying an option (that is, L, P, E, Z, etc.) in a command string
disables default to any options from the previous command (except O,
1, 2).

For example, to punch blocks 0, 1 and 30 of the file TRANS on the SYS
device and read them back onto that file on DTA3, the commands are:

Punch block 0 of TRANS on high-speed punch
with no end of tape punch. Because EPIC
defaults to the paper-tape option initially,
0 is not required in this case.

Punch block 1 of file TRANS with no
end-of-tape character on high-speed device.

+R EFIC

XTRANS -/F/E/Z% Punch block 30 of the file TRANS on
=1 high-speed punch. Punch end of tape (P
X=30/F disables E).

XDTA3: . /Y

Read the tape from the high speed device and
put out to file whose name is encoded in the
patch on device DTA3 until end of tape is
reached. File name and relative block are
punched on the tape so this information is
not necessary. Y clears the default name
(TRANS) .

15-3

EPIC

15.6 ERROR CONDITIONS

If an error occurs while reading a block of paper tape, EPIC outputs
an error message (the error messages are listed at the end of this
section), and halts. You should reposition the paper tape to the
leader/trailer just in front of the block just read before continuing
(refer to Section 15.12, Paper Tape Format). Three consecutive read
errors terminate the command. When EPIC is reading in a non-patch
file it checks the initial block read of every tape and block that is
reread because of error. This is done to determine if the read was
accurate up to name and block number. If the wrong block number or
file name is read, EPIC outputs an appropriate message indicating the
type of error. It then halts with AC=7777 to allow you to reposition
the tape over the correct block or to enter the correct tape before
continuing.

15.7 LOW SPEED I/0

The execution of EPIC differs for low-speed I1/0. Before starting a
low-speed punch, EPIC halts with 7777 in the AC to allow you to turn
on the low-speed punch and then press the CONT key on the computer
console. Upon completion of a punch command, EPIC halts with the AC=0
to allow you to turn off the punch. When you press the CONT key, EPIC
recalls the command decoder. For low-speed input EPIC halts only upon
completion of the read.

If a file or a series of files to be punched exceeds 32 blocks, EPIC
segments it by punching end of tape after 32 blocks. This end-of-tape
punch, done automatically and independently of the E option, keeps
tapes short enough to fit into a paper tape tray. Upon physical end
of tape, EPIC halts with the AC=0 if the 1low-speed punch 1is being
used. This is done to allow you to turn off the punch before
continuing. As soon as the punch is turned off, EPIC outputs the
message END OF TAPE ENTER NEXT and then halts with the AC=7777 to
allow both high—- and low—-speed users to remove the paper tape. Note
that low—-speed users get both halts, but high-speed users get only the
7777 halt. 1In general, a halt with AC=0 means to turn paper tape
device off, and a halt with AC=7777 means to turn device on. All
halts are terminated by depressing the console CONTinue key. If EPIC
encounters end of tape while reading a non-patch file, it outputs the
message END OF TAPE ENTER NEXT and halts with AC=7777. This indicates
that the file is segmented across a number of tapes and that you
should enter the next tape.

15.8 DEVICE CODES

Most of the execution time is spent waiting for paper tape devices.
During I/0 wait, EPIC holds the device code and version number in the
AC. The device code is in bits 3-5 and the yersion number is in bits
6-11. The codes are as follows:

high-speed reader
high-speed punch
low-speed reader (console TTY)
low-speed punch (console TTY)

o> W N

If you forget to turn on the high-speed reader, EPIC hangs with 1xx in
the AC. You can always restart EPIC at 0200. The 0S/8 CTRL/C is
normally in effect; the exceptions are when EPIC is waiting for a
paper tape device or when input is from the low-speed reader.

15-4

EPIC

NOTE
When input is from the low-speed reader,
EPIC forces the output device to be SYS

because it is the only 0S/8 I/0 handler
that does not check for CTRL/C.

Thus, if you were to enter the command:
DTA2:</L

EPIC would force it to be

15.9 EDITING CAPABILITY
Option 1 of EPIC is the file editing and searching facility. With

this feature, you can add patches directly to the file by specifying
relative blocks and locations in the file.

15.9.1 1Initial Command Format
The general format of a command for the editing option is:

R EPIC
TXDEV:NAME</OF TIONS/1%

The /1$ specifies edit mode for EPIC.

As with the paper tape option, default conditions apply. If you have
not specified a device and/or file name, the last one mentioned is
used. When editing, the only option available in the initial command
is:

/Y Clear default name (if one exists)

Editing is performed one block at a time. The relative block you are
currently processing is known as the current block; the location you
are currently processing is known as the current location (0-377).

Relative block 0 1is the first block of the file if a file name is
specified or block 0 of the device if no file name is specified.

15.9.2 Editing Commands
After the initial (file specification) command, you use a series of
keyboard commands to perform the editing. The general format of an
editing command is:

X
or

x,nl,n2

where x is a command letter and nl,n2 are octal numeric arguments. If
you use a numeric argument, the letter is followed by a comma. You

15-5

can type up to 32710 characters on a line. Default conditions apply
If carriage return is the only character
typed as an editing command, the last command specified is executed.

to these

commands as well.

EPIC

The commands are listed and explained in Table 15-1.

Table 15-1
EPIC Commands

Command

Meaning

S, nl, n2

Exit to command decoder; write out current
block of file if it has been modified.

Read relative block n (octal) of file and set
current 1location to 0. Do not write current
block. 1If n is not specified, the current block
is read. If the relative block is out of range,
a ? 1is printed. There are 1341 blocks per 0S/8
tape and 6260 per RK8 disk platter.

Write the current block of file if it has been
modified and read in the next sequential block
of the file. If the current block is the 1last
block of the file, a ? is printed and the
current location is unmodified.

Search the current block for the value nl with
the mask n2. If either nl or n2 or both are
omitted, the last value specified is used. The
initial mask is 7777. Masking is performed in a
logical AND fashion. If the S command is
terminated by the RETURN key, the search is for
the current block only. If the S command is
terminated by the LINE FEED key, the search
continues to the end of the file. If the search
fails (either in the block or to the end of the
file), EPIC prints a 2. If the search is
successful, EPIC prints:

ml m2
m3 /

where ml is the relative block, m2 is the
relative location within the block, and m3 is
the contents of the location (ml is omitted if a
previous match was found in the same block). To
change the contents, type the new contents (in
octal) after the slash. To continue the search,
type the LINE FEED Kkey; to terminate the
search, type the RETURN key. (If the contents
are not to be changed, type one of the
terminators.)

(continued on next page)

15-6

EPIC

Table 15-1 (Cont.)
EPIC Commands

Command Meaning

O, n Open location n of the current block. If n is
not specified, the last opened location is the
default. If there is no default, location 0 is
opened. EPIC responds with

ml /

which is the contents of 1location n. This
location may be modified as 1in search.
Terminating with the LINE FEED key <closes the
current location and opens the next. If the
current location is the last one in the block,
location 0 of the next block is opened, and the
current block is written out as if it had been
modified.

C Print current status, as:
ml (F or B) m2 m3 m4

where ml is the current block, m2 is the current
location, m3 1is the search word, and m4 is the
mask word. If you type F, the file has been
modified since option 1 was requested; B
indicates the current block has been modified.
Once a modified block has been written to the
file, the F is the only code output.

Thus a reasonable sequence is:

R EPIC Call EPIC.

_XDSK$: ISOMER-=./1% Edit file ISOMER on DSK.

Re2 Read block 2.

S$r3126+7770 Search for a 312x in that block.

7 Not there.

> Search for it throughout the file.

0004 0110 Found at block 4, location 110.

3124 /3121 Change contents to 3121.

v2 7777 Search for 31xx throughout the rest
of the block (locations 110-377).

0004 0132 Found at location 132 of block 4.

3126 / 3127 Contains 3126. Change to 3127.

(4 Check status.

0004 B 0132 3126 7777

At location 132 of block 4 which
has been modified; the current
search word is 3126 and mask is
71771.

W Write block 4.

7 Block 4 written but file 1is only
four blocks 1long, no block 5 to
read.

Re2 Read block 2.

0r 10 Open location 10.

13467 /13464 Contains 1367. Change to 1364.

3324 Check next location. No
modifications.

E Exit editing option.

X

15-7

EPIC

15.10 COMPARE CAPABILITY

A third feature of EPIC is file compare (/2). Because EPIC uses an
absolute compare technique, there are no limitations in the data
format or the length of the file. The files you are comparing must
reside on the system device.

COMMAND FORMAT
Option 2 of EPIC requires only one command, specified as follows:
SYS:filel<SYS:file2/options/2§

Specify the first file to be compared to the 1left of the angle
bracket, the second file to the right. The options are:

/A Abort when the first non-match is found.

/B List physical block number for each file where a non-match
exists.

If you specify no options, the block numbers and locations of each
non-match are listed on the terminal.

For example, to compare files PYTHGl and PYTHG2 and find all unequal
locations, the sequence is as follows:

ASYSIPYTHG1<SYSIFYTHG272%
S5Y5:0174 SYS5:0631

0152 7450 3421

0153 5741 2021

0154 3421 3022

X

To compare them and list unequal blocks, the command is:
ASYSIPYTHGISYS!FYTHG2/E/2%

If this block match followed the preceding locations match command, a
sufficient command and its results are:

*X/E
SY5:0174 SYS!10631

To abort after the first non-match, use the sequence:

*/A
SYS:0174 SYS:0631

15.11 ERROR MESSAGES

EPIC can print certain error messages when performing paper tape
(option 0) operations. (See Table 15-2.)

15-8

EPIC

Table 15-2
EPIC Error Messages

Message

Explanation

BAD =BLK

END OF TAPE

END OF TAPE

ENTER NEXT

I/0 ERROR

L/T ERROR

NEED: namel
FOUND name2

NEED: nl1FOUND: n2

When EPIC is punching a patch, it checks
the block specified by "=n" to see if it is
within range. If the block is out of
range, EPIC outputs this error message and
returns to the command decoder. For
example, if a file JOE were two blocks long
and you requested:

SYS:JOE</P=3
the error message would be printed.

EPIC was expecting a block of tape and
found end of tape instead. EPIC halts with
AC=7777 to allow you to reposition the
tape. When you depress the CONT key, EPIC
attempts to read the block.

When EPIC 1is reading a file that 1is
segmented across a number of paper tapes
and encounters the end of a segment, it
outputs this message and halts with AC=7777
to allow you to enter the next segment of
paper tape. Press the CONT key to continue
reading.

If EPIC encounters an error while reading
or writing a mass storage device, or if a
paper tape read fails three consecutive
times, EPIC outputs this error message,
deletes the output file if one exists, and
returns to the command decoder.

EPIC was expecting leader trailer and found
non-leader trailer while attempting to read
a block. The program prints this error
message and halts with AC=7777 to allow you
to reposition the tape, then press the CONT
key.

EPIC read a block of tape for the file
NAME2 when it was expecting a block of the
file NAMEL. This error typically occurs
when you come to the end of a segment for
NAME1l and enter some segment of NAME2
instead of the next segment for NAMEl.
EPIC halts with AC=7777 to allow you to
enter the correct paper tape.

EPIC read block n2 of the file when it was
expecting block nl of the file. EPIC halts
with AC=7777 to allow you to reposition the
paper tape. This error typically occurs
when you reposition the tape to the wrong
block after a read error.

(continued on next page)

15-9

EPIC

Table 15-2 (Cont.)
EPIC Error Messages

Message Explanation

PARITY ERROR EPIC failed to read a block correctly, for
example, the reader dropped some bits.
EPIC halts with AC=7777 to allow vyou to
reposition the tape so that it can try the
read again.

PTR:NAME IS TOO The paper tape file NAME will not fit on
BIG FOR dev: the specified output device DEV:. EPIC
aborts the command and returns to the
command decoder. EPIC makes the check for
size before writing on the output device.

USR n dev:name The USR encountered an error while
attempting to perform a fetch, 1lookup,
enter, or close on the file NAME on device
DEV. n=1 is a fetch, n=2 is lookup, n=3 is
enter, n=4 is close. EPIC aborts the
command and returns to the command decoder.
For example, if you request EPIC to punch a
file on SYS that does not exist:

SYSINILL
EPIC outputs the message

USK 0002 SYSINILL

indicating that it could not find the file
NILL on the device SYS.

15.12 PAPER TAPE FORMAT

Paper tapes punched by EPIC have the following format:

2 DATA 8 DATA 8 2
FEET INCHES INCHES | vvvu.n FEET
BLOCK BLOCK
L/T L/T L/T L/T
START OF BLOCK END OF @APE
PUNCH PUNCH

Leader trailer is any string of 0 or 200 punches; usually it is just
200 punches; leader trailer is terminated by a 201 punch, which
indicates the start of a data block. The first punch after the 1last
data block 1is 377, which is end of tape. Each data block has the
following format:

HEADER DATA DATA DATA

P P = P|CRC | CRC
BYTE BYTE BYTE BYTE

15-10

EPIC

Each byte is 12 punches (96 bits) and corresponds to eight 12-bit
words; each byte is followed by an even-odd parity punch of the eight
words in the byte. Each block is terminated by two CRC punches of
longitudinal parity.

The header byte contains information about the file for example, file

name and relative block number. The data bytes constitute the actual
data of the block; each 256-word block has 32 data bytes.

15.13 LOADING EPIC FROM PAPER TAPE

If you use receive EPIC on paper-tape, use the following procedure to
load the tape and save it on a mass storage device.

+R ARSLIR Use ABSLDR

X*PTRI$™ Read from reader; after °~ is
output, type any key to start
reader

+SA SYS EPIC 0-7577#0200=0 Save on mass storage with starting
address of 200

15.14 EPIC ASSEMBLY INSTRUCTIONS
Use the PAL8 (version 9) assembler to assemble EPIC as follows:

LR PALB
XDEV:EFIC.ENsDEVSEPIC.LS<DEVIEFIC.FA

To create the save file, use ABSLDR:

R ABSLDR Call ABSLDR.

XDEVIEFIC.EBNS Load EPIC.BN on device specified.

ZSA DEV EFIC 0-757730200=0 Save EPIC on device specified.
0-7577 = area in core used during
execution. 0200 = restart address.

15-11

CHAPTER 16

FILE-ORIENTED TRANSFER PROGRAM (FOTP)

FOTP transfers files from one device to another, deletes files from a
device, and renames files. FOTP is significantly faster than PIP and
performs certain functions not available with PIP. For example, FOTP
can transfer files longer than 256 blocks and can perform multiple
file transfers and deletions without requiring multiple accesses of
the directory.

FOTP copies files in the image mode, that is, it copies the file word
for word, character for character, without making any changes in the
file. (This corresponds to the /I option in PIP.,) Thus you may use
FOTP to copy core image and binary files as well as ASCII files,
without specifying options to identify the type of file.

16.1 CALLING FOTP

To call FOTP from the system device, type:

R FOTF

in response to the Keyboard Monitor dot. (You can also call FOTP
indirectly with several CCL commands. See the CCL section of Chapter
1.) The Command Decoder prints an asterisk in the 1left margin and
waits to receive a line of I/0 files and options., FOTP accepts one
output specification and up to five input specifications. The I/0
specification 1line may be terminated with a carriage return (FOTP
retains control) or with an ALTMODE (control returns to the Keyboard
Monitor).

16.1.1 Input Specifications

FOTP input specifications consist of a device, a file name, and a file
name extension. Input specifications are optional but must be present
if you do not include an output specification.

Within the input specification, FOTP allows you to use a wild card
construction. This means that the file name or the extension may be
replaced totally with an asterisk or partially with a question mark to
designate certain file names or extensions. You can use the asterisk
as a wild field to designate the entire file name or extension. For
example:

TEST1.* All files with the name TEST1 and any extension.

* BN All files with a BN extension and any file name.

L All files.

16-1

FILE-ORIENTED TRANSFER PROGRAM (FOTP)

The question mark serves as a wild character to designate part of the
file name or extension. Use a question mark for each character you
want to match; for example, PR?? matches on four characters or
fewer. Some examples follow.

TEST2.B? All files with the name TEST2 and any extension
beginning with B.

TES??.PA All files with a PA extension and any file name up to
five characters beginning with TES.
22.2? All files with file names of two characters or less.

You can specify the asterisk and the question mark together in the
same command line.

?22.% All files with file names of three characters or less.
The following are examples of legal FOTP input specifications:

DSK:

SYS:A
LTA3:TEST1A
DTA7:A.BN

FILE

FILE3.DA

4
NAME?.TX,NAM??.BN
N?ME.

PW?B?Z.7?A

A specification may not contain embedded asterisks; for example,
A*B.* is an 1illegal specification. The following are illegal input
specifications:

A,B,C
A:B:C
A?* B
.AB
DAT:A.*B
A?B:C
*:BIN

If no device is explicitly given for an input specification, the
device associated with the previous specification is assumed. If no
device is explicitly given for the first specification, the DSK: is
assumed. Thus, the following input specifications are equivalent:

DSK:B B
SYS:B.*,C.*,D.* SYS:B.*,SYS:C.*,SYS:D.*
B.*,DTAO:,SYS:*.BN DK:B.*,DTAO:,SYS:*,BN

You can include as many as five input specifications in a single
command line. If all the files are on the same device, the input
device need be specified only once. For example:

DTAO:* BN, *.SV,* RL

refers to files on DTAO that have .BN, .SV, or .RL extensions with any
file name.

16-2

FILE-ORIENTED TRANSFER PROGRAM (FOTP)

16.1.2 Output Specifications

FOTP output specifications consist of a device, a file name, and a
file extension. OQOutput specifications are optional. You can use the
wild card asterisk in output specifications, but use of the question
mark is illegal.

If no output device is specified but a file name is given, then DSK:
is assumed. If no file name is specified, then *.* is assumed. Thus
the following output specifications are equivalent:

A DSK:A
A.* DSK:A.*
DTA3: DTA3:* %

16.2 USING FOTP

Since FOTP performs file transfers in a different manner than other
0S/8 transfer programs, the following is a detailed description of the
way FOTP works. One of the main uses of FOTP is to copy files from
one device to another. The following examples show how FOTP examines
each aspect of a command to determine what operation will take place.

Example 1:
To copy the file SMILE.PA from DTA3 to DTAS5, changing its name to
FROWN.PA, type the following command in response to the Command
Decoder *:

XDTASIFROWN.FA:OTA3ISHMILE.FA

1. If FOTP does not find the file SMILE.PA on DTA3, the
following message appears and no transfer is made:

¥NO FILES OF THE FORM SMILE.FA

2. FOTP examines DTAS5 to determine whether it already contains a
file FROWN.PA. If FROWN.PA is already on DTAS5, FOTP deletes
it before beginning the transfer. This process is known as
predeletion.

3. The /N option specifies that no predeletion is desired. Thus
the command:

XDTASIFROWUN.FA<DTA3!SHMILE.FA/N

begins to copy SMILE.PA to DTA5 without deleting the old
FROWN.PA. FOTP does this by opening a tentative file named
FROWN.PA on DTA5. When the command completes the transfer
operation, it <closes the tentative file. Closing this
tentative file makes it a permanent file and deletes any old
files of the same name. This process is called postdeletion.

4. FOTP assigns the creation date of SMILE.PA to FROWN.PA. This
is an advantage over PIP, which would assign the current date
to the new file. If you always transfer files with FOTP, you
preserve the original creation date of the file. Thus this
feature of FOTP allows you to differentiate between versions
of a file since the more recent version should have a later
date.

l6-3

FILE-ORIENTED TRANSFER PROGRAM (FOTP)

5. Use the /T option of FOTP to assign the current date to a
file. For example, if SMILE.PA is undated, FOTP assigns the
current date to the newly created FROWN.PA.

XDOTAS:FROWN.FA<DTA3ISMILE.FA/T

6. You may be using the additional information words feature of
0s/8. This feature allows you to associate additional
information (other than the creation date) with each file
entry in a device directory. FOTP transfers such additional
information words from SMILE.PA to FROWN.PA. (PIP does not
perform this function.)

If the file structure on DTA5 has space for more information
words than with SMILE.PA, then those extra words are set to
0.

If the file structure on DTA5 does not have enough space for
all the additional information words associated with
SMILE.PA, then FROWN.PA is given as many as can fit (from the
left). Excess information words (on the right) are not
transferred.

Example 2:
Normally, you copy files from one device to another without changing
the file name. For example, to copy the file TEST.PA from DTAl to
DTA2, type:
KDTAZ:TEST.FA<DTAL1ITEST.FA
in response to the asterisk printed by the Command Decoder. Since
this transfer operation is so common, FOTP allows the output file name
to be abbreviated to *.*, The *.* means that you use the input file

name as the output file name. Thus you could type the preceding
command as:

ADTA2:X . k-DTAL1ITEST.FA
Since the *.* specification is so frequently used, it is the default,
that is, if no output file name is specified, *.* is assumed. So you
can further simplify the preceding command to:

XDTA2:-DOTAL1:TEST.PA
Example 3:
One feature of FOTP allows you to use the same command 1line to
transfer multiple files from one device to another. For example, to
transfer five FORTRAN source files from SYS to RKA2Z2, type:

KXRKA2 1%k K-'SYSIDATAL.FTyDATA2.FT»DATAZ.FTsDATA4.FTDATAS .FT
The wild card characters * and ?, explained previously, are
particularly useful when doing multiple file transfers. For example,
to transfer all FORTRAN II source files from SYS to RKA2, type:

KRKA22K X SYSIX.FT

The specification *,FT stands for files with any name that have the
.FT extension,

To copy all files from DTAl to DSK, type:
KDSK XX DTAL k. X

16

|
>

FILE-ORIENTED TRANSFER PROGRAM (FOTP)

Note that the *.* sgspecification has a different meaning when it
appears on the left side of the < than it does when it appears on the
right. When used on the output (left) side, *.* means that the output
file name is the same as the input file name. When used on the input
(right) side, *.* means transfer or consider all files on this device.
For example:

XRKA2:<SYSITEST1.PA,TEST2.PAYyTEST3.FA

copies three files from SYS to RKA2. PIP would require three commands
to perform the same operation. Each command transfers one file.

In the preceding example, no output file name is specified, so *.* is
assumed. No device is specified for the files TEST2.PA and TEST3.PA,
so the device specified as the previous input device (S¥YS) is assumed.
Frequently, you will copy several files with similar names (as above)
from one device to another. 1In many cases, you can reference these
files by a single file specification, using the ? wild character.
For example, the command:
XDTA2: X . X<DTA1:TEST?.PA

transfers all files on DTAl that have the extension .PA and that have
names beginning with TEST followed by one other character.

16.2.1 Additional FOTP Commands
Here are some additional FOTP commands that you may find useful.
To transfer the file X.Y from disk to DECtape:
ADTAO<X.Y
To transfer the files A, B, C, D and E from SYS: to DTA3:
XDTA3<SYS!A»B,CyDvE

To transfer all FORTRAN source files from one DECtape to another,
producing a log of those copied:

XDTA2:<DTASX.FT/L

To list all FORTRAN and BASIC files on the line printer in order of
appearance on DSK:

XKLPTI<X.FTs»X,.RA

To list all FORTRAN and BASIC files on the line printer, 1listing all
FORTRAN files before all BASIC files:

XLFTi<X.FTsX.BA/U
To copy all files other than .SV and .BN files from DTA3: to DSK:,
then copy all files other than those whose names begin with a K from
DTA2: to DSK:. Log all files copied:

XDSKS DTAZIXK, SV X BNy DTA2IK???77 ,%/V/L

16-5

FILE-ORIENTED TRANSFER PROGRAM (FOTP)
To copy the file A.B from DSK: to DTAl:, changing its name to C.D.

Give the new file today's date:

XDTALIC.D-AWB/T

To copy all files from LTA2: that have the extension .PA to SYS:,
changing the extension to .PL and allocating storage on SYS: without
doing predeletions:

_KSYSIXPLILTA2IX.FA/N

To find all files on RKA2: with the name FOO and any extension but
those that have today's date, and copy them to SYS:, changing the file
name to WXYZ yet keeping the extension:

ASYSIWXYZ . k<RKAZ:F00.%/C
To delete all disk files (except those with today's date) that either
have the extension .LS, .TM, or .BK and those whose file name begins
with TMP:
ADSKI K LSr X TMs X . BRy TMFT??.%/0/0
To delete each .BN file for which there is a corresponding .PA file:
1*) BN"‘* . F'A/[l
To delete all .LS files on DTA3: for which there is a file on RKAO:

with the same name but with an extension of either .PA or .RA or with
no extension:

XDBTA3 1K LS<RKAOI X FAs k. RA,X/IV)

To delete all files on the disk for which there are already copies on
one of the four DECtape drives:

KOSKI-DTAO K . XsDTALI X, ks DTA2 LK. X, DTAZ X X/D
To produce a log of all files on DTAl: that have the file name FOO
and an extension which is the same as any file on SYS: that has a one
or two-character file name beginning with a "T". Do not perform any
transfers or deletions:
ADTALIFOO. % "SYSIT?.X/N/D/L
To change the name of the file DSK:FILE.PA to FILEZ2.PA:
KFILEZ2.PA-FILE.FA/R
To rename all files on DTA6: with a .PA extension to a .PB extension:

XDTAG6 X .FE.DTAS 1 X.FA/R

To change the extension from .RL to .OL of all files on DTAl: that
correspond to files on DSK: with the same name and today's date:

ADTAL k. OL-%sRL/C/R

16-6

FILE-ORIENTED TRANSFER PROGRAM (FOTP)

16.2.2 Advantages of Predeletion

The default mode (and the recommended one) of FOTP is the use of
predeletion when copying files. Predeletion creates space on the
output device for the new file. Suppose that, in Example 1 above
(Section 16.2), DTA5 were almost full. There might not be enough
space on DTA5 for SMILE.PA. Deleting FROWN.PA first could «create
enough space for SMILE.PA.

Predeletion normally places the new file in the space occupied by the
file you are replacing. In Example 1 above, if FROWN.PA is first
deleted, the space where it resided is empty. You could then use this
empty space for the new copy of FROWN.PA (the former SMILE.PA). 1If
you did not use predeletion, the new tentative file for FROWN.PA would
probably be placed at the end of the tape. This procedure would
create a gap (EMPTY) when the old copy of FROWN.PA was deleted; thus
the files on DTAS5 would be ordered differently.

16.2.3 Advantages of Postdeletion

Postdeletion is a slightly safer method of transferring files because
you do not delete the original file until you complete a transfer.
Suppose that, in Example 1 above, SMILE.PA is an updated version of
the FROWN.PA, existing on DTAS5, and that these are the only two copies
of a certain source file. If you perform predeletion and SMILE.PA is
discovered to have a permanent input error, that source file will have
ceased to exist because SMILE.PA will be unreadable and FROWN.PA will
have been deleted. The use of postdeletion in this case would save
the original copy (FROWN.PA) even though the updated version
(SMILE.PA) could not be read.

16.2.4 Control Characters

You can use the special characters CTRL/C and CTRL/P to terminate FOTP
operations. When you type CTRL/C, FOTP continues operation until the
files on the output device are the same as those in the output device
directory. Control then returns to the 0S/8 Keyboard Monitor.

CTRL/P causes FOTP to terminate the current operation but to still
retain control. The output device directory is updated to reflect the
operations completed before the termination occurred. FOTP prints an
asterisk and can receive another I1/0 specification line.

If you type CTRL/C or CTRL/P when deleting (/D) or renaming (/R), no
FOTP operations are performed and the following message appears:

ORIGINAL DIRECTORY FRESERVED

16.3 FOTP OPTIONS

The options listed in Table 16-1 may be used in a FOTP specification
line.

16-7

FILE-ORIENTED TRANSFER PROGRAM (FOTP)

Table 16-1
FOTP Options

Option Meaning

/C Current date. Consider only those input files
with the current date when performing a FOTP
operation. For example, 1if you type the
command:

_XDSK:<DTAO !X, X/C

FOTP transfers from DTAO to DSK only those input
files that have the current date.

/D Do not perform any I/0 transfers, that Iis,
perform only deletions. /D is not an
abbreviation for delete although it wusually
performs that operation. This option compares
the input specification with the output
specification, if any, for matching files. If a
match 1s made, FOTP performs as though
transferring the file, and then deletes the
transferred file.

If no transfer occurs, no postdeletion occurs.
Predeletion might still occur unless you include
the /N option. If you specify no output device,
FOTP assumes the first input device specified as
the output device. If you specify no output
files or extensions, that is, *.* is specified
or assumed, the input file names become the
output file names. If you specify no input
files, no deletion takes place.

/F Failsafe. The /F option protects files during a
transfer operation. It is particularly useful
when transferring a great number of files from
disk to DECtape. The /F option allows you to
mount a new volume if a large file will not fit
on the output device or if all files will not
fit on the output device. 1If, for example, you
wish to transfer all .BN files from DSK to DTAO,
type:

XDOTAO:-DSKIXx . BN/F

If the output device becomes full before
transfer 1is complete (or if a large file will
not fit), FOTP prints:

XMOUNT NEXT OUTFUT VOLUME?

Dismount the current tape and mount a new tape
on the same unit. Type any character to
continue. The device mounted must have a good
0s/8 directory. FOTP then continues the
transfer on the new volume and updates the
directories of both volumes.

(continued on next page)

l6-8

FILE-ORIENTED TRANSFER PROGRAM (FOTP)

Table 16-1 (Cont.)
FOTP Options

Option Meaning

/L List on the terminal the names of files affected
during the FOTP operation. Note that neither
the device nor the output file is listed.

/N No predeletion. Delete output file names after
a successful I/0 transfer occurs. If an I/0
transfer proceeds, any other files of the same
name will automatically be deleted when the file
is closed.

/0 Other than the current date. Consider only
those 1input files with a date other than the
current date when performing a FOTP operation.

/0 Query the user about each relevant file name to
determine whether you want the specified
operation to occur for that file. This relevant
file name c¢ould be either an input or output
file name depending upon the type of FOTP
operation being performed. For example, if you
are renaming input files, FOTP prints the
affected input file names. If you are deleting
output files, FOTP prints the output files that
will be affected. FOTP prints each relevant
file name on the terminal and waits for you to
respond. A response of Y causes the specified
operation to be performed. Any other response
causes that file to be ignored, and FOTP prints
the next relevant file name.

/R Rename the output file without performing any
transfer. Perform this operation by specifying
the same device as both the input and output
device. For example:

_XDOSK!TEST3.FA<DISKITEST2.FA/R

would change the name of the DSK file TEST2.PA
to TEST3.PA without performing any transfer.

(a) The rename option (/R) now looks at the /T
switch. If /T is typed, then not only is
the file renamed, but the new file receives
today's date. Without /T, the new name has
the same date as the old name.

(b) The rename option (/R) now allows you to
rename a file to its own name. This was
not previously permitted. It is not very
useful unless you 1include some other

switch, for example /T.

(continued on next page)

16-9

FILE-ORIENTED TRANSFER PROGRAM (FOTP)

Table 16-1 (Cont.)
FOTP Options

Option Meaning

/R (cont.) (c) If you have specified no output file with
/R, the FOTP assumes the same name as the
first input file.

Example:

To redate all files on a DECtape to Jan.
1, 1976:

XDATE 1/1/76
XRENAME DTAOX.%/T

/T Assign the current date to the corresponding
input file.

/U Treat each input specification separately. This
option causes FOTP to find files in the same
order as they are entered in the input
specifications. For example, the command:

XOTAO:<DSKITEST.FArDATAL.FT,»TEST2.FA/U/L

TEST.PA
DATAL.FT
TEST2.FA

finds the files in the order that they were
specified in the command, not in the order in
which they may appear on DSK.

/v Consider only input files which do not have the
form specified by the input specifications. For
example, the command:

XOTAO:<SYSIXk.SVrXk . HL/V

transfers to DTAO0 all files on SYS other than
those with .SV or .HL extensions.

/W Print the version number of FOTP on the
terminal.

16.3.1 Examples of FOTP Specification Commands
The following are legal command strings to FOTP. When FOTP has
completed an operation, control returns to the Command Decoder for
additional input, unless you use ALTMODE to terminate the FOTP command
line.
Example 4:

XDTAO: ZA.E

This command string transfers the file A.B from the device DSK to
DTAOQ.

16-10

FILE-ORIENTED TRANSFER PROGRAM (FOTP)

Example 5:
XDTA3!<SYStAsEsCyDyE

This command string transfers the files A, B, C, D, and E from the
system device to DTA3.

Example 6:
AXDTA2¢<DTAS X . FT/L

This command string transfers all FORTRAN source files from DTAS5 to
DTA2, producing a log of those copied.

Example 7:
XLPT:<X.FTr%x.EBA/U

This command string lists all FORTRAN files, then all BASIC files on
the line printer.

Example 8:

This command string copies from DTA3 to DSK all files other than core
image (.SV) and binary (.BN). It then copies from DTA2 to DSK all
files other than those with names beginning with K. A 1listing is
printed of all files copied.
Example 9:

XDTA1:C.D<A.B/T

This command copies the file A.B from DSK to DTAl, changing its name
to C.D, and assigns the current date to the file.

Example 10:

XSYS X PLLTAZIX.FA/N

This command copies from LTA2 to the system device all files with .PA
extension, changing the extension to .PL.

Example 11:
K LSk, THMs X BRK» TMP???.%/0/0
This command string deletes any disk file that has an extension of

.LS§, .TM, or .BK or a name beginning with TMP if the file does not
have the current date.

16.4 ERROR MESSAGES

The FOTP error messages are listed in Table 16-2.

le-11

FILE-ORIENTED TRANSFER PROGRAM (FOTP)

FOTP

Table 16-2
Error Messages

Message

Meaning

ALREADY EXISTS (file name)

BAD INPUT DIRECTORY

BAD OUTPUT DEVICE

BAD OUTPUT DIRECTORY

DELETES PERFORMED
ONLY ON INPUT
DEVICE GROUP 1
CAN'T HANDLE
MULTIPLE DEVICE
DELETES

ERROR ON INPUT DEVICE,
SKIPPING (file name)

ERROR ON QUTPUT DEVICE,
SKIPPING (file name)

ERROR READING INPUT
DIRECTORY

ERROR READING
OUTPUT DIRECTORY

ERROR WRITING
OUTPUT DIRECTORY

ILLEGAL *

ILLEGAL ?

NO FILES OF THE
FORM xxxXx

An attempt was made to rename an
output file with the name of an
existing output file.

The directory on the specified input
device 1is not a wvalid 0S/8 device
directory.

Self-explanatory. This message
usually appears when you specify a
non-file-structured device as the
output device.

The directory on the specified output
device is not a wvalid 0S/8 device
directory.

You specified more than one input
device with the /D option when you
included no output specification
(device or file name).

The file specified is not transferred,
but any previous or subsequent files
are transferred and indicated in the
new directory.

The file specified is not transferred,
but any previous or subsequent files
are transferred and indicated in the
new directory.

Self-explanatory.

Self-explanatory.

Self-explanatory.

You entered an asterisk as an embedded
character in a file name, for example,
TMP* ,BN.

You entered a gquestion mark in an
output specification.

No files of the form (xxxx) specified
were found on the current input device
group.

(continued on next page)

lé6-12

FILE-ORIENTED TRANSFER PROGRAM (FOTP)

Table 16-2 (Cont.)
FOTP Error Messages

Message

Meaning

NO ROOM, SKIPPING
(file name)

SYSTEM ERROR-CLOSING
FILE

USE PIP FOR NON-FILE
STRUCTURED DEVICE

No space 1is available on the output
device to perform the transfer.
Predeletion may already have occurred.

Self-explanatory.
An input device specified 1is not a

file-structured device, for example,
PTR.

16-13

CHAPTER 17

FUTIL

17.1 INTRODUCTION

FUTIL enables you to examine and modify the contents of mass storage
devices. It is the only program currently available that you can use
to patch programs containing overlays (F4/LOAD outputs). Other
possible uses include examination and repair of 0S/8 directories; bad
block checking and correction; decimal/octal conversion of double
precision numbers; output of the Core Control Block (CCB) of .SV
files and the HEADER of .LD files; and the creation of special
directories. Supporting these functions is signed double-precision
arithmetic expression evaluation that vyou can use in the command
syntax whenever you need a numeric value.

FUTIL commands are divided into two groups. The first group uses
single letters to direct the program in the examination and
modification of single words on the device specified. The second
group of commands uses command words to direct the program in the
dumping, 1listing, modifying and searching of the device on a
block~by-block basis. Also included in this group is a series of
commands to direct the program in some auxiliary functions including
setting and resetting switches and variables within the program,
showing current FUTIL parameters.

Several examples appear in Section 17.4. The first two examples are
especially simple and well-documented and can acquaint you with the
features of FUTIL. You may want to look at them at this point to get
a better understanding of the material that follows.

17.1.1 Special Characters Used in FUTIL

Several characters, when keyed, cause immediate action from the
program. Typing either CTRL/P or CTRL/C will immediately cause the
program to stop whatever it is doing. CTRL/P then causes the program
to go back to command input mode and wait for you, while CTRL/C
returns control to the 0S5/8 Monitor. CTRL/S and CTRL/Q control
program execution (including all I/0). Typing CTRL/S at any time will
cause the program to pause and wait for either CTRL/C, CTRL/P or
CTRL/Q. Typing CTRL/Q will then allow program execution to resume.
Any other characters entered at this point will be simply ignored. 1If
a CTRL/Q is typed by itself at any time, it is simply ignored.

17-1

FUTIL

NOTE

CTRL/S and CTRL/Q are active at all
times, not just during console output.
The result is that both input from the
console and program execution with no
console interaction (such as SCAN, WORD
and STRING command execution) will pause
and restart with these keys.

During console terminal input, three other keys help with editing the
input string of characters. These keys are RUBOUT, CTRL/U and CTRL/R.
The action of RUBOUT and CTRL/U is exactly the same as for the 0S/8
Monitor and Command Decoder (including usage of "scope mode" operation
to change the action of the RUBOUT key from echoing the rubbed out
characters between backslashes to erasing the characters from the
screen). The action of CTRL/R is the same as that of the LINE-FEED
key for the Monitor and Command Decoder.

If you have upper-lower case terminals, the program translates all
lower case characters received from the keyboard to upper case. The
characters are echoed and handled internally as upper case characters.
While this makes use easier, it does not allow any lower-case
characters to be input directly.

In those cases where you need lower-case codes in the modification of
a file, either use the codes directly or use a text editor. This
translation occurs only on input. Lower-case characters in a file
will be printed to the best ability of the output device. This may
produce incorrect results on upper-lower case line printers.

All of the commands are taken in context. This means that many of the
characters in the single character command set will not be considered
to be commands if they are included in a 1line that begins with a
command word or if they are embedded within expressions.

The carriage-return always starts command execution and terminates all
word-type command lines.

17.1.2 Running FUTIL
To run FUTIL, type:
+R FUTIL
or
«RU deviFUTIL
When started, FUTIL is set up to access the system device, the ERROR
message output mode is set to LONG, the access MODE is set to NORMAL,
and no file is known. To access some other device, type:
SET DEVICE dev
To set the ERROR mode to SHORT, type:

SET ERROR SHORT

17-2

FUTIL

To use some other access mode, type:
SET MODE <mode>

command with a <mode> of LOAD, OFFSET or SAVE. When in OFFSET mode,
the OFFSET to be used can be specified by the command SET OFFSET nnnn.
Lastly, a file lookup can be performed by giving a FILE command (with
three default extensions).

17.1.3 Access Method

The program accesses the 05/8 device one 0S/8 block (256 words) at a
time. For every location specified, the real block and word are
determined and compared with the current block in memory. If the
desired block and current block are not the same, the
<something-changed> flag is checked to see if anything has been
changed in the current block. If nothing has been changed, the new
block is read in.

If something has been changed, the current (modified) block is first
written out and then the new block is read in. This action happens
correctly even when the access mode is changed because it is done at
the 1level of the 0S/8 block number just before calling the current
device handler. The status of the <something-changed> flag can be
determined by simply SHOWing ABS, REL or ODT locations. If the flag
is set, the word MOD will be output following location information.

The contents of the 05/8 device, therefore, do not change unless the
block in which changes are made is written out either implicitly, as
described above, or explicitly, using the WRITE command (discussed
near the end of the section on word-type commands). The result is
that typing CTRL/C before writing out the current block (assuming it
has been modified) will return to the Monitor without modifying the
contents of the device.

Note, also, that only one implicit write attempt 1is made by the
program. Should an error occur when the write is attempted (for
example, write-locked device), an explicit WRITE command must be given
to actually write out the block.

If you change the words within some blocks accidentally, the
<something-changed> flag can be reset by using the SET command to
reset the device (described further along in this writeup) to the same
device currently being used. This will reset the <something-changed>
flag, the current block in memory, and the file start block and
core-control-block/header-block (if they had been set by a FILE
command) .

The resetting of the current block in memory will cause the next
access to the device to read in the block desired. The resetting of
the file information will require a new file command to be given to
set it back up. If you cannot remember the current setting of the
device, use SHOW DEVICE first and then set it the same.

Files stored on an 0S/8 mass-storage device generally fall into one of
four categories. The program has four corresponding modes for
accessing the device. The current mode of the program can be set by
the SET command or by chaining (as described previously) and examined
by the SHOW command (to be described later).

FUTIL

The four categories and their corresponding modes are:

1. General (binary, ASCII and data) files - NORMAL mode

2. Core image (save) files - SAVE mode

3. FORTRAN IV load modules - LOAD mode

4, System overlays - OFFSET mode

The actual operation of the program for each of these modes 1is as

follows:

NORMAL

SAVE

LOAD

OFFSET

The high order 7 bits of the 15 bit address are added
to the <current block number to get the actual block
number. The low 8 bits of the 15 bit address are wused
to specify the desired word within that block.

The file to be examined must be set up by a FILE
command . Block numbers are used to specify an overlay
number (future MACREL/LINK support) and must be exactly
zero (0) for files without overlays (generated by the
monitor SAVE command). The core segment data (pages
and fields) from the file's CCB (core-control-block) is
used to determine where on the device the desired word
is 1located. This 1is done by first determining the
correct block from the file's CCB and then using the
low 8 bits of the address to specify the desired word
within that block. Specifying a nonexistent address or
overlay for one of the single-character (ODT) commands
will cause an error. Specifying a nonexistent address
or overlay for any of the word-type commands will cause
the program to ignore the address and access no data.

The file to be examined must be set up by a FILE
command. Block number specifications are actually
taken as FORTRAN IV overlay specifications and must be
contained within the file. You use the information
from the OIT (overlay-information-table) in the header
block of the file to determine where on the device the
desired word is located. Nonexistent addresses are
handled the same way as for SAVE mode.

NOTE

Because the block part of the location
specification changes definition depending on
the mode in use, it 1is recommended that the
first operation following a switch to SAVE or
LOAD mode explicitly specify a block part of 0.
Otherwise a previously specified block part
will be taken to mean a non-existent overlay
number, causing an error.

The 12-bit OFFSET (set by the SET command and examined
by the SHOW command) is subtracted from the low order
12 bits of the address and then the same arithmetic as
with the NORMAL mode is used. This mode is used mostly
with system overlays whose start block number and
actual loading address is known. By setting the OFFSET
to the loading address (which can only be a 12 bit
number), the 12 bit actual addresses of the overlay can
be used.

17-4

FUTIL

The SAVE and LOAD modes are mentioned together throughout this chapter
as MAPPED modes because their method of address translation uses a
descriptor block from the file of interest to control access to the
file in a noncontiguous manner.

NOTE

For all access modes, the 0S8/8 block
number for the block to be read is
stored (for display) in the computer MQ
register (if ©present). The value is
stored before checking if the current
block needs to be written. It 1is
particularly useful for following the
progress of the SCAN command.

17.1.4 Referencing Words on the Device

The words on the 05/8 device are referenced by their location (often
abbreviated as <1>). This location consists of an optional block or
overlay number (which must be followed by a "." if present), and an
address or displacement. The block/overlay number is a 12-bit number
which must be in the range 0 thru 7776 (octal), or 4094 (decimal).
Block number 7777 (or 4095, decimal) does not exist under 0S/8, and
the program will ignore this number.

The overlay number is further limited to the number of overlays at a
given address. Whenever the block/overlay part of the location is not
used, the program will use the last specified value. The
address/displacement 1is a 15 bit number (5 octal digits), but leading
0's need not be specified. Thus, the forms and their corresponding
examples are as follows:

Form Example
<block>.<displacement> 1201.37524
<overlay>.<address> 3.57633
<address> 15721
<displacement> 223

CAUTION

Neither this program nor the 0S/8 device
handlers generally include checking for
legal block numbers. It is assumed that
all accesses to the device will be done
after checking with the directory for
legal file start blocks and lengths,
which is the normal mode of operation
under 0Ss/8. This can have very
interesting results with this program;
for example, the RK8/E handler, given a
block number greater than 6257 (octal)
on device RKAO, will continue on into
device RKBO.

17-5

FUTIL

For the rest of this document, unless otherwise stated, block will
mean block or overlay and address will mean <address> or
<displacement>, depending on usage. Therefore the definition will be:

[block.]address=<location>=<1>

Since these location references are numeric input, all of the
characteristics described next can also be wused when specifying
locations.

17.1.5 Numeric Item (or Numbers)

The program uses two switches, CTRL/D and CTRL/K, to allow the input
of octal, decimal or mixed numeric input wherever numeric input is
used. Each new command line always resets the input mode to octal.
The character CTRL/D switches the input mode to decimal. The
character CTRL/K switches the input mode back to octal. These two
switches may be located anywhere in numeric input.

For example, when inputting a string of numbers, the input would be
alternately decimal and octal if it were

D100, K100, D200, K200,"D300, K300

Two other characters, the double quote (") and the apostrophe ('), may
be used for numeric input. The double quote functions the same way in
this program as it does in PALS8: the 8-bit ASCII value of the
following character is used as a number. As with all character input,
the special characters described earlier cannot be used. The
apostrophe functions in the same way that the TEXT pseudo-op operates
in PAL8: the following two characters are masked to 6 bits each and
packed into a 12-bit word. Two characters must always follow the
single guote. If you desire to pack one half of the word with a 6-bit
00, use the character "@". For example, a string equivalent to the
file name PIP.SV would be represented by the following string:

'PI,'PQ,0,'SV

Expressions may also be used for numeric input when enclosed 1in
parentheses. Use parentheses for each expression, thereby making all
the options of the EVAL command available for numeric input. For
example, the contents of the switch register can be used for a number
by the expression (S), or the current block number +5 could be used by
the expression (B+5). See the discussion of the EVAL command for the
other options available.

NOTE
Parentheses must surround the
expression. Neither digits nor the

switch characters may be outside of the
parentheses or an error will result.
This is required because many of the
non-alphabetic characters have multiple
meanings (commands or operators) so the
use of parentheses eliminates ambiguity.

17-6

FUTIL

17.1.6 Errors and Error Messages

Whenever the program recognizes an error, it outputs an error message.
The message tells both what went wrong and where in the command line
the error occurred. Depending on the setting of the ERROR mode
switch, either short or long messages are output:

?<ee>at<cc><error message>
or
?<ee>at<cc>

where <ee> is the error code, <cc> is the number of the column in the
command line where the program stopped scanning, and <error message>
is the message itself. There are currently 45 error conditions with
corresponding codes and messages to assist you. The error codes and
their messages can be printed out by the SHOW ERRORS command. The
ERROR mode is set by the SET command.

The error messages are swapped with the USR but not in the normal
manner, allowing write-locked startup with the loss of the message
text (see Section 17.5 for more information).

17.2 SINGLE-CHARACTER (ODT-LIKE) COMMANDS

These commands allow you to modify and examine words on an 0S/8 device
in the same way that ODT allows you to modify and examine main memory.

In all of the following commands where the numeric item <n> |is
specified, the operation of closing the location is to place the value
of <n> into the word, if open. If the current location is not open,
or if <n> 1is not specified, no change takes place. Refer to
Introduction to Programming and to Chapter 19, on ODT, for more
information. Note that [<n>] (with the following commands) means that
a numeric item may be supplied optionally.

1>/ Open and output the contents of location <1> in
the current OUTPUT mode.

/ Reopen the last location opened by one of these
commands and output 1its contents in the current
OUTPUT mode.

[<n>]# Close the current location, reopen it and output
its contents in BCD (3-digit binary-coded
decimal).

[<n>]$ Close the current location, reopen it and output

(dollar sign) 1its contents in 0S/8 ASCII.

[<n>1% Close the current location, reopen it and output
its contents in BYTE octal (8 bits with 0S/8
packing).

[<n>]& Close the current location, reopen it, and output

its contents in XS240 format packed ASCII.

[<n>]: Close the current lcoation, reopen it, and output
its contents in SIGNED decimal.

17-7

[<n>1<

[<n>]=

[<n>]>

[<n>}?

[<n>]@

(<n>] [

(<n>]\

[<n>]]

[<n>]$
("ALTMODE" or
"ESCAPE" key)
[<n>]1<cr>

[<n>];

The

FUTIL

Close the current location, reopen it, and output
its contents in OCTAL.

Close the current location, reopen it, and output
its contents in UNSIGNED decimal.

Close the current location, reopen it, and output
its contents in PDP (symbolic).

Close the current location, reopen it, and output
its contents in DIRECTORY format [negated DECIMAL,
DATE (see "@" next) and packed (ASCII)].

Close the current location, reopen it, and output
its contents in DATE format: dd-mmm-yy 2 digits
each for the day and year and 3 alphabetic
characters for the month (except for illegal month
numbers, which are output as a space and 2 decimal
digits).

Close the current location, reopen it, and output
its contents in ASCII.

Close the current location, reopen it, and output
its contents in FPP (symbolic).

Close the current location, reopen it, and output
its contents in packed ASCII.

Close the current 1location, reopen it, and type
its contents as specified by the current FORMAT.
Close the current location.

Close the current 1location and open the next

sequential location. Neither address nor contents
are output, but one space is echoed.

NOTE

: command advances through

addresses without outputting their value
in octal when some other format is more
helpful. For example, when examining a
directory, the file name and extension

can

be output wusing the "]" command

(PACKED ASCII), the date can be output

using

the "@" command, and the file

length can be output using the ":"
command. All of this information can be
made to appear on one line by using the

wn,n
’

command. This does the incrementing

between each of the output commands.
The result would look similar to this:

2.5723171505JUR5 ICE# JPATR30-AUG-725 10071

17-8

FUTIL

For the following commands, the location of the newly opened word is
output before the contents are output. This location is composed of
the 12-bit block number (4 octal digits), a "." for a separator, and
the 15 bit address (5 octal digits). This is immediately followed by
a slash (/) to separate the contents from the address.

[<n>]<line feed> Close the current location; open and output
the contents of the next sequential location
in the current OUTPUT mode.

[<n>]! Close the current location; open and output
the contents of the previous seqguential
location in the current OUTPUT mode.

{<n>] " (circumflex Close current location; open the location

Or up-arrow) (that would have been referenced if the
contents were a PDP-8 memory reference
instruction), and output the contents of the
new location in the current OUTPUT mode.
This command works 1like the stand-alone
version of ODT (not like the 0S/8 version).
Even if bit 3 of the word is set, this
command will not do the equivalent of an
indirect reference.

[<n>]_ (backarrow Close the current location, take its contents

or underline) as an address, open that location, and print
its contents in the current OUTPUT mode.
This operates as an indirect address into the
current field. The field currently being
examined (the high octal digit of the 5-digit
location) will not be changed by this
operation.

<1>+ Open the location <1> locations forward from
the current location, and output its contents
in the current OUTPUT mode. 15-bit

arithmetic 1is used and the block part is
ignored, so this will operate across field
boundaries, that is, within a 32K area.

<1>- Open the location <1> locations backward from
the current location and output its contents
in the current OUTPUT mode. Same

restrictions as with the '+' command.

The current OUTPUT mode has been mentioned several times above. The
program will output the contents of a location either as a four-digit
octal number or as a four-digit octal number with two spaces and the
symbolic representation (PDP or FPP) of the word. See the SET and
SHOW commands (Sections 17.3.2.4 and 17.3.2.5) and the following
section.

17.2.1 Symbolic Output Formats

The symbolic typeout is in nearly the same format that input to an
assembler would need to be to generate the contents of the current
location. It is assumed that these contents are either a PDP-8 or an
FPP-12/8A instruction, depending on the output selected. If the word
to be output is not an instruction (as is the case for the second word
of all 2-word instructions), the decoding will be meaningless.

17-9

FUTIL

For PDP-8 instructions, decoding into mnemonics is done for all memory
reference instructions, for all legal operate instructions (including
8/E EAE instructions except for SWAB), for all 8/E processor, extended
memory and memory parity IOT's, for teletype and high-speed paper-tape
I0T's, for 8/E redundancy check option 1I0T's, for programmable
real-time clock IOT's and for FPP IOT's.,

There are currently a total of 96 IOT's, and the program has space for
an additional 32 IOT codes and their mnemonics. These can be patched
directly into the program using itself. The first word of each
four-word entry is the IOT code (for example, 6221 for CDF 20),
followed@ by 3 words containing up to 6 packed ASCII characters padded
with trailing 0's.

No attempt is made to decode any micro-coded IOT's. Either an exact
match for the current contents will be found in the table or the
program will output:

IOT nnnn
where nnnn is the octal typeout of the low 9 bits of the code.

The next free location in the table (in field 1) is pointed to by the
contents of 1location 10000, The table is terminated by the first 0
for an IOT code, so additions must be contiguous and added directly at
the current end of the table.

For FPP instructions, the full FPP-8/A instruction set 1is decoded
except for IMUL, which is actually an integer mode LEA. For the data
manipulation instructions, the op-code mnemonic is followed by a "#"
for the long-indexed format, by a "%" for the indirect-indexed format,
and by a space for the base addressing format.

For the indirect-indexed and base addressing formats, the operand
address is output as:

B+nnn

where nnn is the 3-digit octal value of the displacement (3 or 7 bits)
multiplied by 3. These formats are those used by the RALF assembler.
This is also true for LEA instructions (that is, LEAI is decoded as
LEA%) .

Both jump and load-truth instruction decoding 1is done as a single
mnemonic whose last two characters indicate the specified condition.
All instructions that use two words are decoded with an asterisk in
the location in the normal assembler format where the value of the
second word would go.

Index register number and "+" for auto-increment (if wused) are also
shown in the assembler format. Any combinations that are not in the
FPP-8/A instruction definitions are output as unused.

NOTE

For both of these output formats, the
use of the mapped access modes (and the
OFFSET mode for PDP decoding) allow the
use of the actual addresses when
decoding the instruction.

17-10

FUTIL

17.3 WORD-TYPE COMMANDS

These commands are grouped by function, as follows:

Group 1:
DUMP type/list out the contents of one or more blocks.
LIST type/list out the contents of one or more locations.
MODIFY modify one or more locations.
Group 2:
WORD word search
STRING string search
SMASK set up string search mask
Group 3:
SET set up program switches and variables
SHOW show settings of program switches and variables
FILE look up file(s) on device
WRITE write out current buffer
SCAN scan for bad blocks
REWIND move device to block 1 and reset directory segment
Group 4:
OPEN open an output file on a file-structured device
CLOSE close the open output file
Group 5:
IF cause command skipping based on expression value
END resume command execution after unsatisfied IF
COMMENT pass user commentary to output device
EXIT exit to 0S/8 (same as CTRL/C)
Group 6:
EVAL evaluate a signed, double-precision expression.

Command words may always be abbreviated to their first two characters,
and BUILD, and some of the commands and their
options may also be abbreviated to only one letter.

as with the

case, the

Monitor
When this is

command forms given will include the one-letter form.

option forms will give the one-letter form directly under the full
word form.
- NOTE

In many cases, two or more words start

with the same letter. 1In these cases,

only one of these words may be

abbreviated to one letter.
The descriptions for each command include each of the possible forms

of the command; an example of that form follows it on the same line.

17-11

FUTIL

17.3.1 Output Formats

The FORMAT option is used to SET up the output format for the "$"
(ALTMODE or ESCAPE) command, described earlier, and the default format
for the DUMP, LIST and MODIFY commands, described below. The syntax
of this command is shown with the other SET commands, but is described
here to make the descriptions of the following three commands more
understandable. The format may be one of the following:

ASCII output each word as a single ASCII character.

A

PACKED Qutput each word as two 6-bit trimmed and packed

P ASCII characters. This is the format of PAL8 TEXT
strings.

0s Output each word as 1 or 2 0S/8 packed ASCII

characters. The even address words output 1
character and the odd address words output 2
characters.

X5240 Qutput each word as two 6-bit packed ASCII
characters by adding a space (240 octal) to the
contents of each 6-bit byte. This is the format
of PAL12 SIXBIT strings.

BYTE Output each word as 1 or 2 0S/8 packed bytes of 8
bits each as 3-digit octal numbers. The even
address words output 1 number and the odd address
words output 2 numbers.

UNSIGNED Output each word as an unsigned decimal number.

U

SIGNED OQutput each word as a signed decimal number.

S

OCTAL Output each word as a 4-digit octal number.

o)

BCD OQutput each word as 3 BCD digits. The digits 0

B through 9 are followed by ":" (10), ";" (11), "<"
(12), "=" (13), ">" (14), and "2" (15).

PDP Output each word as an octal number, followed by

FPP 2 spaces and its mnemonic representation, assuming

it to be a PDP-8 or an FPP-8A instruction. See
the symbolic output description.

DIRECTORY Output each word in octal, decimal (signed), date
(see "@" command) and packed ASCII formats.

The FORMAT is initialized to packed ASCII.

The output from the DUMP and LIST commands for each of these formats
is set up as follows:

1. At the beginning of each line the current location is output
in 1location format with a 4 digit block number and a 5 digit
address, both in octal, as

<block>.<address>:
For example, 1271.17205: - location 17205(8) relative to
block 1271(8).

17-12

FUTIL

2. The maximum number of words per line is set up as follows:

a. The four character formats output 16 words per line with
no extra characters.

b. The five numeric formats output 8 words per line with 2
spaces between each number.

c. The symbolic and directory formats output 1 word per
line.

For LIST with A or B, the first line may be shorter than succeeding
lines to force the second and following address outputs to be even
multiples of 10 (octal).

17.3.1.1 DUMP - The DUMP command outputs one or more whole 256-word
device blocks in the default or an optionally supplied format. This
command has the following forms:

DUMP [<format>] <block string>

DUMP <block string> Dy 100y200-213,250
D <block string> I (B)-(B+10)s(S)
DUMP <format><block string> ny PA 212

D <format><block string> o 0S 514

where the optional <format> is one of those given for the FORMAT
option above, and the <block string> is one or more numer ic items
separated by commas and dashes. The dash is used when it is desired
to dump a group of blocks, and is used as

<start block>-<end block>

the comma separates single blocks or groups of blocks if there is more
than one per line.

NOTE

In a mapped mode (SAVE or LOAD), the
DUMP command cannot dump any block
except that block containing location 0.
To eliminate the confusion that this
would produce, the command will simply
output an error message reminding you
that the proper command to use in a
mapped mode is the LIST command.

The output from the DUMP command is sent to the DDEV (dump device),
which can be either the console terminal, the line printer, or a file.
See the SET command for setting the dump device and output mode.

17.3.1.2 LIST - The LIST command outputs the contents of one or more
words on the device in the default or in an optionally supplied
format. This command has the following forms:

LIST [<format>] <location string>

LIST <location String) LI 123.200_517’200.0

L <location string> L 312.10-17,100-117+176
LIST <format><location string> LI UN 200-227

L <format><location string> L SI 200-277

17-13

FUTIL

where the optional <format> is one of those given for the FORMAT
option above, and the <location string> is one or more locations,
separated by commas. When it is desired to list a group of words, the
dash is used to separate the start and end addresses as

[<block>.]<start address>|[-<end address>]

If the block part is not specified, the last block number specified to
the program will be used. If an end address is specified, the start
address is assumed to be in the same field as the end address (that
is, the highest octal digit of the 5-digit address), so a maximum of
4096 words can be specified by each group.

As with the DUMP command, the output from the LIST command is sent to
the DDEV. For more information see the last paragraph of the DUMP
command, the SET command, and Section 17.5.

17.3.1.3 MODIFY - The MODIFY command allows a string of locations on
the device to be easily changed. Specify the format of the input,
letting the program do the work of storing the data properly. This
command has the following forms:

MODIFY [<format>] <location string>

MODIFY <location string> MO 200.0-17,35-43
M <location string> M 32745-32777
MODIFY <format><location string> MO PA 12342-12360
M <format><location string> M AS 367.7261-7275

where the <location string> has exactly the same format as for the
LIST command (the <format> options are shown below}). If the <format>
is not specified (as with the first form), the program will pick the
format that corresponds to the current setting of the FORMAT option.
The formats are shown below.

MODIFY format FORMAT setting and MODIFY action.

ASCII ASCII - one character of input is stored in
A each word to be modified.

PACKED PACKED - two characters of input are packed
P as trimmed 6-bit characters, padded with

trailing 00's. Control characters (those
with codes less than 240 octal) are packed as
a 6-bit 77 (flag) and the low-order 6-bits of
the character. Note that this means that "e"
is packed as a terminator (00) and that "?"
is not unique.

101 05 - three characters of input are packed
into two words to be modified. In this
format, the start address must be even and
the end address must be odd.

XS240 X5240 - a space (240 octal) 1is subtracted
from each character and then it is packed as
6-bit bytes. Control characters are handled
as with PACKED format.

17-14

FUTIL

NUMERIC SIGNED & UNSIGNED decimal, BCD, OCTAL, BYTE,

N PDP, FPP and DIRECTORY formats - the input is
a string of numeric items which are stored
one per 12-bit word. See the section on
numeric items. Note that bcd, byte,
directory and symbolic are not included, that
decimal or octal input are determined by the
CTRL/D and CTRL/K switches and that signed
numbers must be input enclosed in
parentheses, for example, 17, (-10), ~D200,
(-"K312), 40, (-"D35*129).

For each location or group of locations specified by the <location
string>, the program will prompt for the input by printing the start
location in the same format as described under the output format
options above.

CAUTION

The program always modifies exactly the
number of words specified by each item
in the <location string>. If you input
extra characters for the character
formats or extra numeric items for the
numeric format, they will be ignored.
If you do not input enough characters or
items, the rest of the words to be
modified will be set to the FILLER value
(see the SET command). The program will
not output any message 1if either of
these things takes place. This does,
however, make it possible to fill from 1
to 16 blocks on a device with zero or
some other value by specifying all the
words to be filled in NUMERIC format and
then responding to the prompt with a
single F (the value of the FILLER) and
RETURN.

Input to the program is always terminated by a carriage-return. It is
not possible to insert a carriage-return 1into a word using this
command. All of the editing keys are available for use during input,
so the CTRL/C, CTRL/Q, CTRL/S, CTRL/R, CTRL/P, CTRL/U and RUBOUT
characters cannot be entered using this command. For all of the
character input formats, spaces (excluding leading spaces, which are
ignored) and tabs in the input string are packed as they are seen.
For numeric input, spaces are ignored and the numeric items must be
separated by commas.

You can always abort the command by CTRL/P if you change your mind
before you press the RETURN key.

17.3.2 Search Limits

The program has two search commands: the WORD search and the STRING
search. Both search from a lower limit to an upper limit. The limits
are either the LOWER and UPPER limits set by the SET command (the
default) or the 1limits set up by the FROM <1> and/or TO <1> clauses
that can optionally follow the command word. FROM <1> overrides the
lower 1limit, and TO <1> overrides the upper limit. Leaving out the

17-15

FUTIL

block parts of either of the two temporary 1limits will cause the
program to wuse the block part of the corresponding default limit set
by the SET command. In a mapped (SAVE or LOAD) access mode, searching
through non-existent locations or overlays will never produce a match.
Whenever a match is found, the program outputs the location where the
match occurred, followed by the word or string that matched.

NOTE

You cannot search through more than one
overlay per search command. To do so
would require different and separate
handling of the block and address parts
of the limits when in the mapped modes,
including the resetting of the address
part. The result is that, in the mapped
modes, the block parts are used to set
the overlay to be searched (lower 1limit
only), and only the address parts are
used in the determination of the number
of words to be searched.

17.3.2.1 WORD (Search) - The WORD search command searches for a word
or words which, masked by the MASK (which is set by the SET command),
will match the search word (also masked). This command and 1its five
options follow:

WORD [UNEQ] [ABS] [MEM] [FROM <1>] [TO <1>] <n>

WORD <n> wo 217

W <n> W (S)

WORD UNEQUAL <n> W UN O

WO U <n> WO U (C&377)

WORD ABSOLUTE <n> WO AR 7402

WA < W A 7000

WORD MEMREF <n> WOR MEM 41

WO M <n> WO M 40

WORD FROM <1><n> WO FR 213.0 2317
W F <1><n> WF 1.35 (8)

WORD TO <1><n> W TO 213.345 1111
W T <1><n> WORD T 6257.377 7777

...and any combination and order of the above options.

In this command and its options, <n> is the bit pattern being searched
for, UNEQUAL means that all words which are not equal to <n> under the
mask do match, and the temporary limits clause is as described above.
ABSOLUTE means that the 1location where the match occurred is to be
output as an absolute block number and displacement rather than as a
relative location. MEMREF means that only words whose high-order
octal digit is 0 thru 5 (that is, the PDP-8 memory reference op-codes)
are allowed to match, independent of the setting of the MASK.

When you want to search for those words that reference a specific
location, set the MASK to 377 (octal) and then use the MEMREF option.
This will exclude all Operate (op-code 7) and IOT (op-code 6)
instructions from the output. This will make it easier to find the
desired information (for example, you will not output the location of
every CIA, 7041 octal, when you are looking for references to location
41 octal).

17-16

FUTIL

NOTE

UNEQUAL has a higher priority than
MEMREF, so first each word is tested
under the mask for equal/UNEQUAL and if
the specified condition is true, then
the word 1is tested for the MEMREF
condition.

17.3.2.2 STRING (Search) - The STRING search command searches for a
string of numbers (bit patterns) under an optional string mask. This
command has four options and has the forms:

STRING [MASKED] [ABS] {[FROM<1>] [TO<1>] <numeric string>

STRING <numeric string> ST 4557040

STRING MASKED <numeric string> ST MA 4577+0+1203

ST M <numeric string> ST M 5566+0

STRING ABSOLUTE <numeric string> ST AR ‘PI»‘F@

ST A <numeric string> ST A "Ay "R

STRING FROM <1><numeric string> STR FR 100 1540002

STR F <1><numeric string> ST F 123.4567 (S)»(-5)
STRING TO <1><numeric string> STR T 7577 ‘ERs ‘RO» ‘R@
ST F <1> T <1><numeric string> STF 1.0 T 7.0 ‘“FOy ‘TF

...and any combination and order of the above options.

In this command and its options, the numeric string is simply a string
of numeric 1items separated by commas. MASKED specifies that the
search is to be done under the string mask. ABSOLUTE is as for the
WORD search, and the temporary limits clause is as described above.

When the MASKED option is used, each item of the numeric string is
masked by a separate mask word from the string mask. If the string
mask is shorter than the search string, it 1is used in a circular
fashion (the first word follows the last) as many times necessary to
mask all of the items of the search string. If the string mask is
longer than the search string, the extra words are not used. This
feature allows for very complex searches to be done.

For example, you want to find all calls to a certain subroutine in a
file and also see their arguments. This could be done as follows:

FILE FUTIL -look up file to be searched
FUTIL.SV 6070-6120 "F —you stop typeout

SE MODE SAVE ~-set access mode to mapped

SMASK (—~1),0+0 -set mask for 2 arguments per call
ST M 4547+0+0 -search for 4547 and 2 dummies

The output will give the address of the subroutine call (which
requires an exact match due to the mask of 7777) and the contents of
the two following words (which can be anything, since they are masked
by 0).

Using the mask specified above, a search could be made for an exact
match, 2 "don't care words" and another exact match by simply
specifying a search string with 4 arguments. The first item of the
string mask will be used to mask both the first and the last items of
the search string.

This command can be particularly useful when trying to find certain

kinds of references in programs for which no CREF listing (or perhaps
no listing at all) is available.

17-17

FUTIL

17.3.2.3 SMASK - The SMASK command sets up the string mask. It has
the following form:

SMASK <numeric string> SM (-1)+050,7000,0

where the numeric string is the same as for the STRING search command
above. The current contents of the string mask may be examined by the
SHOW command.

17.3.2.4 SET - The SET command sets up various switches and variables
within the program. It has many options, each the name of the switch
or variable, and is always followed by a word or number describing how
it 1is set. All items are separated by spaces. The command has the
following two forms:

SET <option(s}> SE OU PDP ERR LONG MODE SAV
S <option(s)> S LO 100.0 UF 123.377 1DEV LPT

where the options are as follows:

OUTPUT OCTAL Set the output mode for the
OUTPUT O single-character commands. Initialized
o} PDP to OCTAL.

o} P

ouT FPP

o} F

ERROR SHORT Set the mode for error message output.

E S The SHOW ERRORS command will list

E LONG all error messages. Initialized to

ERROR L LONG. Also set to SHORT by
write-locking system device.

FORMAT <format> Set output format for LIST, DUMP, etc.
The formats have been described
previously. Initialized to PACKED
ASCII.

OFFSET <1> Set the offset to the 1low 12 bits of
<1>. 1Initialized to 0.

FILLER <n> Set the filler to the 1low 12 bits of
<n>. Initialized to 0.

LOWER <1> Set the lower search limit. 1Initialized
to 0.200.

UPPER <1> Set the upper search limit. 1Initialized
to 0.17577.

DEVICE <device name[:]> Set up the 0S5/8 device for access. The
handler is fetched at this time.
Initialized to SYS (device 01). ":" 1In
<device name[:]> is optional. <device
name> is an assigned or permanent 0S/8
mass storage device name.

DDEV <device name[:]> Set up the dump device. Initialized to

SYS. See also DMODE below and OPEN and
CLOSE' commands.

17-18

FUTIL

MODE NORMAL Set up the device access mode. These
MODE N have been described previously.
MODE SAVE Initialized to NORMAL.

MODE S

MO LOAD

MO L

MO OFFSET

MO o]

DMODE NONE Set up the dump output mode.
DMODE PART Initialized to NONE, which sends all
DMODE ALL output to console only. PART sends

DUMP, LIST and SHOW ERRORS output to the
DDEV (perhaps to a file). ALL sends all
output to both the console device and to
the DDEV. (See section on file output.)

MASK <n> Set the WORD search mask to the low 12
M <n> bits of <n>. Initialized to 7777.
TEMP <n> Set the TEMP storage to the 24-bit value

of <n>. Value is returned by subsequent
use of the T in expressions.

As many options as desired may be specified on one command line,
separated by spaces. In the event of an error, none of the options
past the point where the error occurred will have been set. If you
have any question, use the SHOW command.

17.3.2.5 SHOW - The SHOW command lists the current setting of any of
the program switches and variables set by the SET command and other
information. The program outputs either words or numbers to best
describe the current settings. As with the SET command, as many of
the options for this command as desired may be specified on single
command line, separated by spaces. This command has the form:

SHOW <option(s)> SH BL CCB LOW UP ODT REL ABS

where the options are as follows:

BLOCK Output in octal the start block number of the last
B file specified by the last FILE command.

CCB Output the core control block of the last file
C specified by the FILE command. If the file is not

a SAVE file, an error will occur. The start
address of the file is output as a 5-digit octal
number, the Jjob status word (JSW) 1is output in
octal, and the core segments are output as 5-digit
octal addresses.

HEADER Output the header block information for the last

H file specified by the last FILE command. If the
file is not a LOAD file, an error will occur. The
start address is output as a 5-digit octal number,
followed by the next free address as a 5-digit
octal number, the loader version number in octal
and a message if Extended Precision is reguired.
Then, for each level, a line is output with the
number of overlays, the 5-digit start address, the
relative start block and the 1length of the
overlays (in blocks) for this level.

17-19

ABSOLUTE
A

RELATIVE
R

oDT

LOWER

UPPER

FILLER

MASK
M

SMASK

OFFSET

MODE

DEVICE
DDEV

OouTPUT
0

FORMAT
F

VERSION

ERRORS
E

FUTIL

Output the absolute location of the last word
accessed on the device in <location> format (a 4
digit octal block number, a "." and a 5-digit
octal address) and the word MOD if the current
block has been changed (the <something-changed>
flag is set).

Output the relative location (what you specified)
of the last word accessed on the device in <1>
format and the word MOD if the current block has
been changed.

Output the relative 1location of the 1last word
accessed by one of the special-character commands
in <1> format and the word MOD if the current
block has been changed..

Output the search lower limit in <1> format.
Output the search upper limit in <1> format.
Output the value of the filler in octal.

Output the WORD search mask in octal.

Output the current contents of the STRING search
mask as a string of octal numbers.

Output the value of the offset in octal.

OQutput the name of the current setting of the
device access mode switch (NORMAL, SAVE, LOAD or
OFFSET) .

Output the 0S/8 deivce name and number.

Output the name of the dump device.

Output the name of the current single-character
(ODT) command OUTPUT mode (OCTAL, PDP or FPP).

Output the name of the current output format.

Output the current version number of FUTIL.

Output a complete 1list of all error codes and
their corresponding messages. Note: this list is
output to the DDEV (dump device) so that it can be
output using the LPT handler for your system.
Note that Version number 1is also output with
errors.

17.3.2.6 FILE - The FILE command locates files on the 0S/8 device and

sets wup the

start block of a file for the mapped access modes, SHOW

CCB, etc. This command has the forms:

FILE <file name string> ' FI FUTIL FIF.SV
F <file name string> F MICRO.LD

where the <file name string> is a string of one or more O0S/8 file
names, separated by spaces. Any other characters except "." will be

17-20

FUTIL

taken as part of the file names. The program assumes extensions of
.SV, LD and null (in this order) when looking up the file. This can
lead to a substantial amount of time when a large directory is
searched three times for a file that does not exist. Specifying an
extension will cause only one lookup attempt to be made. A null
extension, if desired, may be specified by making the "." the last
character of the file name. The program does one or more separate
lookups for each file name specified and outputs either

<file name> ssss-eeee 0000 (dddd) b.11l1l dd-mmm-yr
or

<file name> ssss-eeee 0000 (dddd) b.1l1ll

or
<file name> LOOKUP FAILED

where "ssss" is the start block of the file in octal, "eeee" is the
last block of the file in octal, "oooo" is the length of the file in
octal, "dddd" is the length of the file in decimal, "b.11l1]" is the
block (segment) and location within that block of the first word of
the file entry (the first two characters of the name) in the
directory, and dd-mmm-yy is the file date. If the directory does not
contain the extra word required for the date or the date word of the
file is 0, the second form with no date will be output rather than the
first form. The LOOKUP FAILED message means either that the file name
was not found on the device or that the device is a write-only device.

The actual lookup operation is performed by the 0S/8 USR, which is
swapped as needed (see section on program execution). Since the USR
keeps track of the current device once the first FILE command is
given, it will have the wrong directory in memory if the medium (tape
or disk) is changed on the physical device. This can be solved one of
three ways:

1. Use the REWIND command to rewind the device being removed and
clear the directory segment from the USR.

2. Do a SHOW ERRORS and abort the output when the message output
begins. This will have swapped out the USR. If messages are
not available, use 1 or 3.

3. Use EXIT or CTRL/C to return to O0S/8 and then directly
restart FUTIL with the 0S/8 START command. This will have
swapped out both error messages and USR from memory.

Any of these methods should be followed by a SET command to reset the
device and the rest of the I/0 parameters desired.

The last file name specified that did not have a LOOKUP FAIL will be
the file used in the mapped access modes, SHOW CCB, etc. The program
is initialized with no known file, so attempting to access any
location in a mapped access mode or attempting to SHOW CCB or SHOW
HEADER without giving a valid FILE command will cause an error.

17-21

FUTIL

17.3.2.7 WRITE - The WRITE command forces the program to write out
the block currently in memory. It has the form:

WRITE [<block>]

where the optional <block> overrides the default number of the block
that was read to specify where the current block is to be written.
This dangerous operation does allow a limited amount of copying in a
special situation, e.qg., allowing a directory to be backed up by
moving a copy to the end of the device (see the examples section) or
copying a single block from one device to another by changing the
DEVICE and then doing a WRITE (with or without an argument). Again,
as stated in the section on accessing the device, caution must be used
because attempting to write beyond the end of a device may not be
checked by the handler.

17.3.2.8 SCAN - The SCAN command does a rapid scan for read errors on
the current device. It has the form:

SCAN <block string> SC 0-462357

where the block string is of the same form as for the DUMP command.
Each block is simply read. If an error occurs, it is reported as:

0ooo BAD BLOCK

where "0000" is the block number in octal, and the scan continues.
This is the only FUTIL command that will continue on a read error. If
the current block has been changed, and if any other blocks are
included 1in the scan, an implicit write will be attempted by FUTIL.
An error on this implicit write will be reported and then the command
will be aborted. This is the only time that this command will attempt
a write. The command can then be repeated if desired and it will
execute (only one implicit write attempt is ever made by FUTIL).

NOTE

The 0S/8 actual block number for the
block to be read is stored for display
in the computer MQ register, if present.
It 1is particularly useful for following
the progress of this command. The value
is stored before checking if the current
block needs to be written.

17.3.2.9 REWIND - The REWIND command is used to move a tape back to
block 1 and to reset the USR directory segment. It has the form:

REWIND

and must be terminated by the RETURN key. It causes a read of block 1
of the device and resets the directory segment in the USR (if in
memory). Any subsequent FILE command will cause the directory to be
read.

17-22

FUTIL

17.3.3 File Output

Output to file-structured or non-file-structured dump devices is
provided through two commands, OPEN and CLOSE, and two SET options,
DDEV and DMODE. They can be used to simply make fast hard copy output
from the DUMP, LIST and SHOW ERRORS commands, to provide a hard copy
log of all operations carried out with a video terminal, to provide an
ASCITI file output of some data for later processing by another
program, etc.

Output to file-structured and to non-file~-structured devices (serial
devices) is handled in two separate ways. Output to the
file-structured device is done by first setting the DDEV and DMODE and
then OPENing an output file. No output to the device will be done
until the file is open (to protect your directories), and then output
will be done one block at a time. When output to the file is
complete, CLOSE your file to make it a permanent file (properly
terminated with a CTRL/Z and padded with nulls).

Output to a non-file-structured device is done by simply setting the
DDEV and DMODE. Output to the device will be done one line at a time,
as soon as specified by the DMODE, and neither the OPEN nor the CLOSE
commands are needed. The output is done by padding the buffer with
nulls after each line is ready and then <calling the output device
handler, so the handler used should ignore nulls (which leaves out the
PTR: handler, for example).

17.3.3.1 OPEN - The OPEN command opens an output file on file
structured devices for partial or total output from the program. It
has the form:

OPEN <file name> OFLH 0T T

where the file name should be a standard 0S/8 file name. The
extension defaults to .DU (for dump) if none is supplied.

WARNING

FUTIL gives significance only to the
characters space, carriage-return and
"." when scanning file names. It |is
your responsibility not to include
characters that are not legal to other
0S/8 programs or the files will be able
to be accessed only through FUTIL or the
CCL command decoder.

This command must be given after the dump device is SET by the DDEV
option. The output specified by the DMODE will then be sent to this
file, one block at a time (packed only 8 bits per word), until either
the DMODE is changed or the file is closed.

Files can be opened at will without closing any previous file. This
gives the user additional flexibility, but at the expense of possibly
losing an output file if it is not closed.

Should an error occur on the output device while doing output, the
file is simply thrown away (it cannot be closed).

17-23

FUTIL

17.3.3.2 CLOSE - The CLOSE command closes an output file previously
opened. It has the form:

CLOSE

and must be on a line by itself. 1If given with no file open, it is
simply ignored.

17.3.4 Batch Operation

Operation of FUTIL under BATCH allows repeated operations to be done
without re-entry. All of the operations provided under interactive
operation are provided except that the RUBOUT character is simply
ignored, input 1is taken directly from the BATCH stream and console
output goes to the log output device.

Four commands have been added specifically to support use of FUTIL
under BATCH: IF, END, COMMENT and EXIT. These commands are also
available for interactive use, but are not as important in that mode.

17.3.4.1 1IF - The IF command was implemented specifically to allow
FUTIL, when operating under BATCH, to be sure that the correct
operations are proceeding before modifying something incorrectly. It
has the form:

IF<expression> IF C~3575

where <expression> i1s a general expression of the same form as used by
the EVAL command. If the expression evaluates to exactly zero (as a
24-bit integer), command execution will continue as though the command
had not been seen. If the result 1is not exactly zero, command
skipping will begin and will continue wuntil a 1line containing the
single word END is found. Command execution will then resume.

This command was set up to test only for =zero under the assumption
that a test 1is to be made for some exact qguantity. However, the
capabilities of the expression evaluator can be used to generate
sufficiently complex expressions for other tests. For example:

IF 40000000&(......)
IF -(40000000&(...))-1
IF 10000&(-(77770000

will test for positive
- will test for negative
1(...))) will test for 12-bit non-zero

17.3.4.2 END - The END command re—enables command execution following
an unsatisfied IF command. It has the form:

END

and must be on a single 1line by itself. When encountered during
command execution, it 1is ignored. The IF/END commands cannot be
nested because the first END found will re-enable command execution
for any number of previous IF commands. For example:

IF...

IF...

IF... -
END will terminate all three.

17-24

FUTIL

17.3.4.3 COMMENT - The COMMENT command allows optional comments in
command input which will simply be ignored during execution. It has
the forms:

COMMENT [<comment>] COMMENT THIS IS ONE
C [<comment>] C

where [<comment>] is an optional comment. Note that blank 1lines may
also be used for formatting of the output log but that they will also
close any open location.

17.3.4.4 EXIT - The EXIT command provides a method of return to 0S/8
other than CTRL/C. It has the form:

EXIT

and the rest of the line is ignored. Exit does not write out the last
block modified. Use WRITE to make changes permanent.

17.3.4.5 EVAL - The EVAL command evaluates a parenthesized expression
of signed double-precision integers. It has the forms:

EVAL <expression> LV SX7TD4026+1D
E <expression> E E¥x400+L

where the <expression> follows +the normal rules for arithmethic
expressions. Legal operators, in their order of precedence are:

evaluate inner expression
signed division

signed multiplication
subtraction

addition

logical product ("and")
logical sum ("or")
expression end

* N~

—— 4

Besides 24-bit numeric input (which can be octal, decimal or mixed
octal and decimal) under the control of the CTRL/D and CTRL/K switches
and ASCII and packed ASCII using " and ', the following variables may
be used:

C current contents (of location L).

L current location (15 bit, same value as is output by the
SHOW RELATIVE command).

B current block number (as for L).

F contents of FILLER (12 bits).

T contents of TEMP (24 bits).

S contents of the console switch register.

R the remainder of the last division or the high product of
the 1last multiplication. (24 bits, the sign may not be
correct.)

D contents of 0S/8 Monitor date word.

17-25

FUTIL

Overflow on addition, subtraction and multiplication are ignored, but
trying to divide by 0 will cause an error.

If no errors occur, the program evaluates the expression and types out
the results in the form:

=00000000 (sddddddaqd)

where "o00000000" is the double precision result in octal and
"sddddddd" is the signed double precision result in decimal (the sign
is either a dash or a space).

17.4 EXAMPLES

These examples help provide an overview of the use of the program.
The first two examples are discussed in detail to illustrate the
mechanics of the operations, while the following examples are intended
primarily to show what can be done with the program. Should questions
arise on the mechanics, review the first two examples and the
discussions of the commands in question.

Example 1:

Assume that you would like to know what CCL remembers of your last .UA
command. What it remembers 1is stored on block 65 (octal) of the
system device. As described in the source of CCL, each unit of what
it remembers 1is allocated 40 (octal), or 32 (decimal) words in this
block. The first four of these words contain binary information, and
the 1last 34 words contain the last input command, stored as packed
ASCII characters. The lines contain the inputs for the commands as
follows: TECO and MAKE (line 0), EDIT and CREATE (line 1), COMPILE
and EXECUTE and PAL (line 2), UA (line 3), UB (line 4), and UC (line
5). Thus, the saved .UA command can be listed by outputting the
contents of the 4th through 37th words of area 3 in block 65 as packed
ASCII characters as follows:

_;R' FUTIL -call FUTIL from OS/8
EVA 3%4044 -calculate start displacement
=00000144 (0000100) —of the 3rd line (=144[8])

Now list the words of this line with the LIST command, specifying
the output format to be PACKED ASCII characters and the words to
list to be block 65 locations 144 (from above) through 144+33
(the expression for the location of the last word of this line).
FUTIL responds with the start location and a line of characters,
and the next location with a multiple of 10[8] as an address and
a line of characters.

[TST FACKRED 45.144-(144+213) -list the words wanted
D06%.00 1448 TR RIFUT?P?? ¥ /E/R=3
VOATT . O0LE0 ! -that's it!

NOTE

For the examples above and below, the
symbol <cr> 1is wused to show that you
need to terminate vyour command lines
with a carriage return. All other lines
above are output by the program.

17-26

FUTIL

Example 2:

Now assume that you would like to make the simple patch for 0S/8
FORTRAN IV users with an FPP-8/A to use the lockout feature of the
FPP-8/A (from the August 1976 DIGITAL Software News). This requires
changing the contents of location 15776 of FRTS (the Fortran Run Time
System) from 400 to 410 (which adds the lockout bit). You also want
to update the date word of the directory entry for FRTS (the 4th word
beyond the start of the entry) to show that the file has been updated.
This is done as follows:

\R FUTIL -call it
AVE -set FUTIL to a mapped mode
iglEﬁggESS ~look up the file to map

TS.SV 0671-0722 0032¢(0026) 1.327 31-DEC-75
FRTS -1.327 is start of entry!

Now use ODT command / to open and change one word.
15776/0400 410 —-add LOCKOUT bit

SET MODE NORMAL -switch to unmapped

Now use ODT command / with an expression to open the date word,
command @ to output it in date format and then put today's date
(as an octal value) in its place.

1.(32744)/6373
P31-DEC-7S¢(D) -change file date to today's date

WRITE -send out this change

NOTE

First the file FRTS.SV is changed, and
then the 0S/8 directory is updated to
the current date. Changing the address
desired from FRTS to the directory
automatically writes out the modified
block of FRTS before reading in the
directory segment that contains the file
name. However, the changed directory
segment must be written out explicitly
because there are no other blocks to
examine for this example.

Example 3:

While doing a /S transfer with PIP, PIP gives a read error in your
file SOURCE.PA. Attempting to read it with EDIT causes EDIT to type
?20°C and return to the Monitor. Find out what is wrong as follows:

.R FUTIL

FISOURCE.PA ~look up the file
SOURCE.PA 0243~0351 0107 (0071) 2.005 30-AUG-74

SE MASK 0 LO 243.0 UP 351.377 -set up mask & limits
W UNE O -search the file

17-27

FUTIL

?ee AT 08 FATAL READ ERROR -here is the problem

[Note: "ee" may change with version, so is left out.]

SH ABS —-find out where it is
ABS.LOC=0271.00000

WR -attempt to clear error

DU O0S (B+L/400) -it worked, now dump it
0271.00000:...."P —-change your mind

W UN FR 272.0 0 -check the rest of the file
“Cc -ok, now go fix the source

This sequence can also be carried out wusing the SCAN command

follows:
.R FUTIL
F1 SOURCE.PA - use CCL to call & lookup
SOURCE.PA 0243-0351 0107 (0071) 2.005 30-AUG-74
SCAN 243-351 — scan the area
0271 BAD BLOCK - here is the problem!

271.0/ ?ee AT 07 FATAL READ ERROR - get block with trouble

WR - attempt to clear error

DU OS (B+L/400) - it worked, now dump it
0271.00000:....7P - change your mind

e - ok, now go fix the source

If the error had been of some type other than a clearable error,
WR command might also have failed.

Example 4:

as

the

After using BUILD to change your system, find out the device number

for DTAl:
.R FUTIL
SE DEV DTAl - fetch the device handler
SHOW DEV
DEVICE = DTAl (06) - number is decimal

Example 5:

By accident you zero a DECtape directory which contains the only

of

copy

a file you need. You have the PIP /E listing of the directory but

only want to re-build it enough to get the wanted file. The name
the file is LOST.FI:

.R FUTIL

SE DEV DTAl - it was here

EV "D5+14+11+10+16+13+8+5 - lengths of all preceding
= 00000122 (0000082) - files

EV "D730- "K6l1- "D82-25 - rest of DECtape room

= 00001076 (0000574)

17-28

of

FUTIL

1.0/ 7777 (-3) ~ now 3 files

4/ 7777 - 1 extra word per entry
0001.00005\ 0000 'DU - set up a "DUMMY" file
0001.00006\ 7556 'MM - over the old <EMPTY>
0001.00007\ 1752 'Ye

0001.00010\ 3451 0 - a null extension
0001.00011\ 6234 (D) - put in today's date
0001.00012\ 4235 (-"D82) - length

0001.00013\ 5761 'LO - the desired file
0001.00014\ 3341 'sST

0001.0015\ 2371 ©

0001.00016\ 1107 'FI - the extension
0001.00017\ 1366 (D)

0001.00020\ 3015 (-"D25) - its length
0001.00021\ 3415 0 ~ an <EMPTY> to end it
0001.00022\ 2713 ("D574) -~ the rest of the tape
WRITE - now write it out

“C - & exit to use it

The LINE-FEED key was used to advance through the words.

The above example is exactly the same as hand calculating the required
length of the DUMMY file and then doing the following sequence using
PIP:

.R PIP
*DTAL:DUMMY</I=122
*DTA1:LOST.FI</I=31
*°C

~ enter the DUMMY file
- enter the LOST.FI

Note that the lengths of the files are specified for PIP in octal.
Example 6:

Search for the end of each page of text in the file WRITE.UP, Since
the file is an 0S/8 ASCII file, which has two characters packed in the
low 8 bits of two words and a third character packed in the high 4
bits of both of the two words, the form-feed character ("L) may be
packed as the third character in some cases. So it 1is necessary to
search both through the low 8 bits of each word and through the high 4
bits of each pair of words. Do it as follows:

.R FUTIL

FI WRITE.UP

WRITE.UP 0301-0437 S°P -
SE MA 377

SE'LO 301.0 UP 437.377 -

typeout stopped

char mask & limits set
WA"L - search for form-feed
....... typeout occurs here
SMASK 7400,7400 - set up string mask
ST M A (""L*20),(""L*400) - search for 3rd char f-f

....... more typeout here - only even addresses are real
- parts of form-feed pair!

In the string search, both the string and the data searched are masked
by the string mask.

17-29

FUTIL

Example 7:

You just assembled and saved PROG.SV but forgot to use the /P switch
to ABSLDR. Fix the CCB (core control block) as follows:

.R FUTIL
FI PROG.SV
PROG.SV 0341-+P - stop output
341.1/ 6203 - the "CDF CIF" part &
0341.00002\ 6400 - the address
0341.00003\ 0000 400 - change the JSW
WR - write the new CCB
SHOW CCB - check it this way
CCB:

SA = 06400,JSW = 0400

CORE “P - ok, output stopped

Example 8:

The CREF listing file for your source file is about 732 blocks 1long
(just over one full DECtape). If you do want to CREF the file onto a
DECtape, you must do it either with the /X (do not process 1literals)
switch or else you could use FUTIL to set up the directory with 735
blocks (by starting at block 2) as follows:

"R pip

*dtal:</z - zero the directory

*"C

.R FUTIL

SE DEV DTAl - ** gee WARNING below **
1.1/ 0007 2 - change first block number
6/ 6446 (C-5) - 5 more blocks

WR - write it out

e - now CREF it....

WARNING

Do not copy files onto a device that has
been fixed this way with FOTP (COPY
command) because it writes out a
directory of six blocks after the
transfers are finished and this will zap
blocks 2 through 6 (the first 5 blocks
of the first file) after the copy is
done. PIP and other processors do not
monkey around with the directory and
will handle this correctly.

17-30

FUTIL

Example 9:

Something is wrong in your system and you have been 1losing your
directory repeatedly. After fixing it up with both PIP and FUTIL, you
just want to back it up while you generate your output files onto
another device. Since your system device has a total of 6260 (octal)
blocks (an RK8E) you back up the directory as follows:

.R FUTIL

1.0/ 7714 WR 6251
2.0/ 7740 WR 6252
3.0/ 7770 WR 6253
4.0/ 0000 3.2/ 0000
“C

transfer blocks up by
6250 blocks

block 3 was last, so
all done

Shortly after this, everything crashes totally, i.e., directory
smashed, system gone from disk. Rebooting from DECtape you use PIP to
restore the system area and then use FUTIL to restore the directory:

.R FUTIL

SET DEV RKAO ~ load non-system device

6251.0/ 7714 WR 1 - transfer by 6250 blocks
6252.0/ 7740 WR 2 - the other way

6253.0/ 7770 WR 3 - the last one

SCAN 0-6250 - do a SCAN for good luck

Example 10:

During a SCAN of a device a bad block is found in an important data
file and you would like to know just how far the read of that block
really succeeded (e.g., on a DECtape, the type of error will determine
whether the read will abort immediately or wait until the end of the
physical block). The following commands assume that the block number
is "bbbb" and set the input/output buffer in FUTIL to zeros before
doing the read:

bbbb.0/ ?ee AT 07 FATAL READ ERROR - do read to set up

MOD NUM 0-377
bbbb.00000: 0 - set whole buffer to 0

SET DEV same - set to device now in use

/ 2ee AT 01 FATAL READ ERROR

force the read again
DUMP OC bbbb ~ dump & examine the block

This example makes use of the fact that changing the DEVICE resets the
status of the buffer without changing its contents. This status
includes the block number known and the <something-changed> flag.
Therefore the next access to the block causes the block to be re-read
without attempting to write it out. Following the second error, as
much of the block as possible will have been read into memory and can
now be examined for non-zero values (assuming that the data itself was
not all =zeros). If the read terminated before the end of the block,
there should be an obvious separation between the zero and non-zero
values.

17-31

FUTIL

Example 11:

Your system has a line printer that can output 132 characters per line
and 68 lines per page and you would like to change PAL8 and CREF to
make use of this to use less paper. Allowing two lines at the bottom
of the page, the lines per page should be set to 66 (call this nl).
Three changes need to be made to PAL8 to change the global numberr of
lines per page (nl), the number of items per column of the symbol
table (-nl+l) and the number of symbols per page (3*[nl-11]). One
change needs to be made to CREF to change the number of lines per page
{nl) and three changes need to be made to change the number of items
per line of cross references. Since CREF uses 10 characters for the
symbol name and six characters per 1line number, 19 references can
comfortably fit on one line (19*6+10= 124). The following changes to
these two programs will increase the number of lines per page and the
numbers of items per 1line in the cross-reference outputs and then
update the dates of the two programs in the directory:

.R FUTIL FILE PALS8.SV
PAL8.SV 0200-0217 0020 (0016) 1.057 03-APR-76

SET MODE SAVE
1104/ 0070 D66

global lines per page
1256/ 7711 (-"D65)

symbol table column size

1273/ 0245 (3*"D65)

symbols per page

FILE CREF ** SEE NOTE BELOW **
CREF.SV 0220-0234 0015 (0013) 1.065 18-JAN-74

2564/ 7704 (-"D66) lines per page as above

2017/ 1102 1366> TAD 2166

change instructions here
2132/ 1102 1366> TAD 2166 - and here to get new
2166/ 0077 (-"D19)

references per line

SET MODE NORM

reset access mode

1.(57+4)/ 2036 (D) change dates of PALS

(65+4)/ 0624 (D)

and CREF.

WRITE

output the last changes

Location 2166 was not used previous to this patch. Note that the
first reference to the word in CREF will cause the last block that was
modified in PAL8 to be written out. Similarly, the first reference to
the directory will cause the last block that was modified in CREF to
be written out.

NOTE

These patches were empirically
determined and applied to PAL8 V9H and
CREF V3C. They have been applied to
some other versions of both programs but
have not been tested with 0S/8 V3D. USE
THESE WITH CAUTION!

17-32

FUTIL

17.5 PROGRAM EXECUTION AND MEMORY ALLOCATION

The start address is 06400. When the program is started here, it
resets the internal CCB buffer, resets the start address to 00200,
tests the scope mode status (changing the action of RUBOUT if it |is
set), performs initialization for the extended date format, attempts
to write out the error messages (resetting the ERROR mode control if
unsuccessful), tests the BATCH-in-progress status (changing all
console I/0 to BATCH I/0 if it is set) and jumps to 00200. If you
want to manually re-start the program after it has been loaded,
re-start it at 00200.

The error messages are swapped with the USR, but not in the normal
manner, allowing write-locked startup with the loss of the message
text. When the program starts execution, it writes the messages onto
the system device in the same area used by the USR in swapping. Once
this has been done, the USR or error messages need only be read into
memory, as needed. In the case where it is not possible to write on
the system device, that is, it is write-locked, the messages are
discarded, SHORT mode is set permanently, and execution continues
without a hitch. Similarly, if an error occurs when reading the
messages, SHORT mode is set permanently, and an error is given to warn
that this has happened (with no message).

The program uses almost all of the available memory in an 8K PDP-8.
It is allocated as follows:

00000-06237 program proper

06240-06577 buffer for arguments

06400-06777 - once only code for chaining
06600-07177 dump device handler area, 2 pages
07277-07577 device handler area, 2 pages

10000-11777 USR area & error messages (swapped)
12000~12577 CCB/header input and test, file output
12600-15700 text strings, lists

15700-16377 string mask, command buffer stack
16400-16577 CCB buffer, 1 page

16600-17177 "dump" device buffer, 2 pages

17200-17577 I/0 buffer, 2 pages

The buffer for arguments in field 0 is defined long enough to store 45
numeric string items. The string mask buffer, in field 1, is 66 words
long, and the command buffer, also in field 1, is 140 characters long.
These 1lengths were <chosen in anticipation of input from console
devices with up to 132 characters per line. No checking of any kind
is done to protect against overflow of any of these buffers under the
assumption that these buffers are 1large enough for any reasonable
input to this program; however, the arrangement of the buffers is set
up in such a way that the most valuable data is the farthest distance
from a variable buffer.

The expression evaluation stack buffer uses the area in field 1 from
the end of the command buffer (approximately location 16130) to the
beginning of the CCB buffer (location 16377). This should provide
ample room for any expression to fit on one line. Again, no checking
to prevent overflow is done.

17-33

FUTIL

17.6 COMMAND SUMMARY

SINGLE-CHARACTER commands: ([<n>] = optional <item>)
[<1>}/ <1>+ <1>-
[<n>] with S:8sa<=>28e([\]
$ (ESCAPE) RETURN; LINE FEED ! ~

WORD-TYPE commands: (And modifiers, many of which are optional)

ASCII PACKED OS XS240 UNSIGNED SIGNED BCD BYTE OCTAL PDP FPP

DIR
DUMP [<format>] <block string> ([<format>]s above)
LIST [<format>] <location string> ([<format>]}s above)
MODIFY [<format>] <location string> ([<format>]s below)
ASCII PACKED OS XS240 NUMERIC
WORD <option(s)> <n>
UNEQUAL ABSOLUTE MEMREF FROM <1> TO <1>
STRING <option(s)><number string>
MASKED ABSOLUTE FROM <1> TO <1>
SMASK <number string> e.g., 1,34,0,7700,0,(-1),377
SET <option> <setting>
OUTPUT OCTAL PDP FPP
ERROR LONG SHORT
FORMAT <format>
OFFSET <1>
LOWER <1>
UPPER 1>
DEVICE <device name[:}>
DDEV <device name[:]1>
MODE NORMAL SAVE LOAD OFFSET
DMODE NONE PART ALL
MASK <n>
FILLER <n>
TEMP <n>
SHOW <option(s)>

BLOCK CCB ABSOLUTE RELATIVE ODT LOWER UPPER
MASK SMASK OFFSET MODE DEVICE OUTPUT FORMAT
HEADER FILLER VERSION ERRORS DDEV

FILE <file name(s)>

WRITE [<block>]

SCAN <block string>

REWIND

OPEN <file name>

CLOSE

IF <expression>

END

COMMENT [<comment line>]}

EXIT

EVAL <expression> e.g., (11(S+°D17))*"K15+)C&7600)
!'s+-*/ () CLBFTSRD

Numeric Input:

"D "K <digits> "<1 character> '<2 characters>
{...all eval options...)

Control Characters:

“P °C "U "R RUBOUT "S 7Q

17-34

FUTIL

17.7 SINGLE-CHARACTER COMMAND OUTPUT FORMAT SUMMARY
([<n>] = optional numberic item)
Output in octal or octal & symbolic (PDP or FPP):

<1>/ / [<n>]LINE-FEED (<n>1! [<n>]" [<n>]
<1>+ <1>-

Qutput in a specified format:

[<n>1%# BCD

[<n>]$ 0S/8 ASCI1I

[<n>]: SIGNED decimal

[<n>1% BYTE octal

[<n>]& XS240 format packed ASCII

[<n>]K OCTAL

[<n>]= UNSIGNED decimal

[<kn>1> PDP symbolic

[<n>]? DIRECTORY

[<n>]@ DATE format (extended, in alpha)
[<n>11 ASCII

[<n>]1\ FPP symbolic

[<n>]1] PACKED ASCII

[<n>1$ (ESCAPE) As SET by last SET FORMAT x

No output: [<n>];

17-35

CHAPTER 18

MAGTAPE/CASSETTE PERIPHERAL INTERCHANGE PROGRAM (MCPIP)

You may use MCPIP to transfer files between standard cassettes or
magnetic tapes and other 0S/8 system devices, delete those files, and
transfer directories. MCPIP allows you to read or write any standard
cassette file on a cassette or magnetic tape. In particular, MCPIP
can read or write any file created by or to be used by the CAPS-8
system or by the 0S/8 system (using any 0S/8 device handler). MCPIP
can also read or write any magnetic tape file that is in standard
cassette file format, that is, a file created by MCPIP or CAPS-8.

You may run MCPIP on any 0OS/8 system equipped with at 1least 8K of
memory and TABE cassette or TM8E magnetic tape drives. MCPIP supports
any 0S/8 system device. Before running MCPIP, you must locad the 0S/8
cassette or magnetic tape handlers as described in the 0S/8 System
Generation Notes.

18.1 CALLING AND USING MCPIP
To call MCPIP from the 0S/8 system device, type:
R MCFIF

in response to the Keyboard Monitor dot. The Command Decoder then
prints an asterisk in the left margin of the terminal and waits to
receive a line of I/0 files and options. MCPIP accepts one input file
and performs output to a single output file. It transfers the
contents of the input file to the output file in image mode. In
response to the asterisk, type an I/O specification of the following
form:

*outfile<infile/(options) = size

Each file specification consists of a device and an optional file name
(for file-structured devices). To perform I/0 on a given cassette
drive, your 0S/8 system should be confiqured with an 0S/8 cassette
handler for that drive.

The permanent device names for cassettes are CSA0-CSA7. Magnetic
tapes have the permanent device names MTAO0-MTA7. Permanent device
names for other 0S/8 devices are 1listed in the Keyboard Monitor
section of Chapter 1. You use these device names in the I/0
specification, along with any file name that is necessary. For
example, to transfer a CAPS-8 file named DATAOl to the disk, type:

XOSKNINATAO1CSAL IDATAOL

if you have mounted the standard cassette on drive 1 and if your 0S/8
system has a handler for drives 0 and 1 (unit 0) with entry point

18-1

MAGTAPE/CASSETTE PERIPHERAL INTERCHANGE PROGRAM (MCPIP)

names of CSAO0 and CSAl. 1If you specify a cassette handler without any
file name, MCPIP uses the handler without modification, i.e., it uses
the cassette as a non-file structured device similar to a paper tape
reader or punch. Thus, the command:

_XCSAZI<DSKISI SCO.BN

would perform the same operation with MCPIP as the command:
_XCSA2:<SI SCO.BN/I

would perform with 0OS/8 PIP.

If you specify a magnetic tape handler with a file name, MCPIP
considers the magnetic tape as a file-structured device and assumes
that it has the same format as a standard cassette.

Since MCPIP performs file transfers for all types, there are no
assumed extensions assigned by MCPIP to file names for either input or
output files. -:You must explicitly specify all extensions, where
present, except when using the /B option.

Following completion of a MCPIP operation, the Command Decoder again
prints an asterisk in the left margin and waits for another MCPIP 1/0
specification line. You can return to the Keyboard Monitor by typing
CTRL/C or by ending a MCPIP specification line with an ALTMODE.

18.1.1 MCPIP Options
Table 18-1 details the options allowed on a MCPIP I/0 specification

line.

Table 18-1
MCPIP Options

Option Meaning

/B Transfer files in special CAPS-8 binary format. If
you use the /B option and no extensions are
specified, MCPIP assumes .BN for 0S/8 files and .BIN
for cassette files. If input is from PTR:
(high-speed paper tape reader), you must position the
paper tape on the leader.

[1 The square bracket "[]” option allows you to specify
a decimal file type on a cassette output file. The
notation in brackets does not refer to the file sizes
in this case. Hence, to create a file with the name
CAS50.BI on cassette drive 1 and give it a file type
of 3, type:

XCSA1:CASSO0.BIL3I<

For output files other than cassette, square brackets
have the same meaning as in 0S/8 PIP. For
information on file types, see the Cassette
Programming System User's Manual (DEC-8EOCASA-B-D),
Appendix E.

(continued on next page)

18-2

MAGTAPE/CASSETTE PERIPHERAL INTERCHANGE PROGRAM (MCPIP)

Table 18-1 (Cont.)
MCPIP Options

Option Meaning

/D Delete the file specified from the output cassette or
magnetic tape. The /D option is valid only if the
output device is a cassette or magnetic tape. For
example:

XMTA10FILE</D
will delete OFILE from the magnetic tape on drive 1.

=n Specify in the low order 12 bits of n the number of
words (characters) per record that occur in the
cassette or magnetic tape output file. The low order
12 bits of the n specification may be between 0 and
1000 (octal), inclusive. If not specified, 200 |is
assumed.

You need not specify the = option for cassette or
magnetic tape input files because MCPIP will
determine the record size from the file's header
record. If the output record size specified is
greater than 1000 or if an input record size 1is O,
MCPIP prints an error message since it cannot handle
variable~length records. The high order 11 bits of
the = option are used to specify the version number
for the file. The = option is ignored if the output
file is not a cassette or magnetic tape file.

/I Assume the input device is a cassette drive. You
must also specify an input device on the command
decoder line, but it is ignored. Use this option
when there are no cassette handlers configured into
your system. The drive number is specified as an
option, for example, /1 represents drive 1. Do not
use the /I and /0O options in the same command line.

/0 Assume the output device is a cassette drive. You
must also specify an output device on the command
decoder line, but it is ignored. Use this option
when there are no cassette handlers configured into
your system. You specify the drive number as an
option. Do not use the /I and /O options in the same
command line.

/L Read the input cassette or magnetic tape directory
and write it onto the output file. Notice that in
this case the input file itself is not transferred,
only the directory. The /L option applies only if
the input device is a cassette or magnetic tape.

/2 If you have not specified a file name, you should
zero the cassette or magnetic tape on the drive
specified as output by writing a sentinel file on it.
Every magnetic tape or cassette should be zeroed
before you use it for the first time. If you specify
a file name (for a cassette or magnetic tape drive),
write a sentinel file after the file specified.

18-3

MAGTAPE/CASSETTE PERIPHERAL INTERCHANGE PROGRAM (MCPIP)

Although cassette or magnetic tape file names may have 3-character
extensions, O0S/8 allows only 2-character extensions. Thus, when
looking up a cassette file, although all three characters may be
specified, only the first two are significant. For example,
CSAO:FILE.PAL might match a file called FILE.PAT. All files on a
standard cassette must be unigue with respect to the file name and the
first two characters in the extension. On output, the third character
of the extension is always a space (unless you specify the /B option).

NOTE

If you ¢type CTRL/C while a write
operation 1is 1in progress on a cassette
or magnetic tape, MCPIP writes an
end-of-file before returning to the
Keyboard Monitor.

18.2 MCPIP ERROR MESSAGES

Error messages that appear while MCPIP is running are listed in Table
18-2. If you specify an output file on a cassette or magnetic tape
and axfile by that name already exists, the file on the output drive
is deleted before any transfer 1is performed. 1If MCPIP detects an
error while a cassette or magnetic tape output file is open, it tries
to close the output file by writing a sentinel file on the output
cassette or magnetic tape.

Table 18-2
MCPIP Error Messages

Message Meaning
CANNOT HANDLE VARIABLE The records on the input and output
LENGTH RECORDS files specified are not the same size.
MCPIP cannot handle variable length
records.
CLOSE ERROR MCPIP is not able to close the file.

A bad file Jjust created on magnetic
tape or cassette must be removed by
placing a sentinel file after the
preceding file. (See the /Z option.)

device DOES NOT EXIST The device specified does not exist on
the 05/8 system. "Device” is a set of
four characters given when MCPIP
expected an O0S/8 device name such as
DTAO.

ENTER ERROR Error occurred while trying to enter
an output file. This message usually
means that the cassette or magnetic
tape has no sentinel file.

FETCH ERROR Error occurred while trying to fetch
an 0S/8 device handler.

(continued on next page)

18-4

MAGTAPE/CASSETTE PERIPHERAL INTERCHANGE PROGRAM (MCPIP)

Table 18-2 (Cont.)
MCPIP Error Messages

Message

Meaning

file NOT FOUND

ILLEGAL * OR ?

ILLEGAL SYNTAX

INPUT ERROR

NO INPUT FILE

NO OUTPUT FILE

OUT-IN

OUTPUT DEVICE FULL

OUTPUT ERROR

RECORD SIZE TOO BIG

TOO MANY FILES

The file specified cannot be found.
"File" is the actual name of the file
that was not found.

Wild card * or ? was specified in a
MCPIP command line. MCPIP does not
accept the wild card construction.

The command line to the Command
Decoder contains an illegal character
or was incorrectly formatted.

An input error occurred while reading
the file.

No input file was specified when one
was required.

No output file was specified when one
was required.

Both the input and output devices were
specified as the same cassette or
magnetic tape drive.

Either the device or the directory
lacks room.

Output error - possibly a WRITE LOCKed
device, parity error, or attempt to
output to a read-only device.

The output record size is greater than
1000 or an input record size is 0.

More than one output device or more
than one input device was specified.

18-5

CHAPTER 19

OCTAL DEBUGGING TECHNIQUE (ODT)

ODT allows you to run your program on the computer, control its
execution, and make alterations to the program by typing instructions
on the keyboard.

19.1 FEATURES

ODT features include location examination and modification, and
instructions breakpoints to return control to ODT (breakpoints). ODT
makes no use of the program interrupt facility and 1is invisible to
your program.

The breakpoint is one of ODT's most useful features. When debugging a
program, allow it to run normally up to a predetermined point, where
you may examine and possibly modify the contents of the accumulator
(AC), the 1link (L), or various instructions or storage locations
within your program, depending on the results you find. To accomplish
this, ODT acts as a monitor to the program.

You decide how far you wish the program to run, and ODT inserts an
instruction in your program which, when encountered, causes control to
transfer back to ODT. ODT immediately preserves in designated storage
locations the contents of the AC and L at the breakpoint. It then
prints out the location where the breakpoint occurred and the contents
of the AC at that point. ODT will then allow you to examine and
modify any location of your program (or those locations containing the
AC and 1L). You may also move the breakpoint and request that ODT
continue running your program. ODT will restore the AC and L, execute
the trapped instruction, and continue in your program until it
encounters the breakpoint again or terminates the program normally.

19.2 CALLING AND USING ODT -
Call ODT into use by typing:
.0ODT

in response to the Keyboard Monitor dot. Before you call ODT, you
should have a running version of your program in memory. Running ODT
disturbs none of your memory because the sections of the program ODT
may occupy when in memory remain on the system device and swap back
into memory as necessary. ODT uses the Job Status Word of the
particular program to determine whether or not swapping occurs. 1If
the program does not use locations 0-1777 in field 0, less swapping
occurs during use of the breakpoint feature.

19-1

OCTAL DEBUGGING TECHNIQUE (ODT)

If you are typing any amount of program directly into memory (in
octal), the memroy control block of the program may not reflect the
true extent of the program. If you make octal additions below
location 2000 in field 0, ODT may give erroneous results. You can
correct this condition by correcting the Job Status Word, which is
location 7746 of field 0. You can examine and change this by using
ODT. Location 7745 of field 0 is the 12-bit starting address of the
program in memory, and location 7744 contains the field designation in
the form 62n3 (where n is the field designation of the starting
address).

When using the breakpoint feature of ODT, you should Kkeep the
following operating characteristics in mind:

o If a breakpoint is inserted at a location which contains an
auto-indexed instruction, the auto-indexed register is bumped
immediately after the breakpoint is hit. Thus, when control
returns to you in ODT, the contents of the register will be
incremented by one. The breakpoint instruction is executed
properly, but the index register, if examined, may appear to
contain one greater than it should.

® ODT keeps track of the TTY flag and restores the TTY flag when
it continues from a breakpoint.

® The breakpoint feature uses locations 4, 5, and 6 in the
memory field where the breakpoint is set.

® The breakpoint feature of ODT uses the table of user-defined
device names as scratch storage, destroying any device names
you may have created. After a session with ODT in which vyou
use breakpoints, give a DEASSIGN command to clear out the
user—-device name table.

® Do not set breakpoints in the Monitor, in the device handlers,
or between a CIF and the following JMP instruction.

You should not use user-defined device names in programs being
developed with ODT breakpoints.

If you attempt any operations in non-existent memory, ODT ignores the
command and types "?". Thus, if the machine in use has 8K (fields 0
and 1) and you attempt to examine locations in field 2 and above, ODT
responds with 2.

ODT should not be used to debug programs that use interrupts. Typing

CTRL/C returns control to the Keyboard Monitor; vyou can save the
program on any device.

19.3 COMMANDS

19.3.1 Special Characters

Slash (/) - Open Preceding Location

The location examination character (/) opens the location addressed by
the octal number preceding the slash and prints its contents in octal.

You can then modify the open location by typing the desired octal
number and closing the location. Any octal number from one to five

19-2

OCTAL DEBUGGING TECHNIQUE (ODT)

digits long is legal input. If you enter more than five digits, only
the last five entered are accepted by ODT. Typing / with no preceding
argument opens the location named last, for example:

400/1540
400/1540 24687
400/1540 02345
/02345

Return - Close Location

If you have typed a valid octal number after ODT has printed the
content of a location, typing the RETURN key causes the binary value
of that number to replace the original contents of the opened location
and the 1location to be closed. If you typed nothing, the location
closes but the content of the location does not change, for example:

400/6046 location 400 is unchanged.
400/46046 2345 location 400 is changed to contain 2345,
/2345 6046 replace 6046 in location 400.

Typing another command will also close an opened register, for
example:

400/6046 401/6031 2346 location 400 is closed and unchanged
40/6046 401/2346 and 401 is opened and changed to 2346.

Line Feed - Clese Location, Open Next Location
The LINE FEED key has the same effect as the RETURN key, but it also

opens the next sequential 1location and prints its contents, for
example:

400/1540 location 400 is closed unchanged and 401
is
00401 /2345 opened. User types change, 401 is closed
00402 /7650 containing 1234 and 402 is opened.
" (Sshift /N) - Close Location, Take Contents as Memory Reference and

Open Same

The up arrow will close an open location just as the RETURN key does.
Further, it will interpret the contents of the location as a memory
reference instruction, open the referenced location and print its
contents, for example:

3270 symbolically is "DCA, this page,
404/3270 © relative location 70," so ODT opens
00470 /4512 0000 location 470.

< (Shift /0) Close Location, Open Indirectly

The back arrow will close the location that is currently open, and

then interpret its contents as the address of the location whose

contents it will print and open for modification, for example:
36U/3203 7

002G /30572
035720 /70216

19

i
w

OCTAL DEBUGGING TECHNIQUE (ODT)

19.3.2 Illegal Characters

Any character that is neither a valid control character nor an octal
digit causes the program to ignore the current line and to print a
question mark, for example:

4:?
ODT opens no location.
4p?
406/1136 67K? ODT ignores modification and closes
/1136 location 406.

19.3.3 Control Commands
nnnnG - Transfer Control to User at Location nnnn

Clear the AC then go to the location specified before the G. The
program will initjalize all indicators and registers and insert the
breakpoint, if any. Typing G alone will cause a jump to location O.

nnnnB - Set Breakpoint at User Location nnnn

Instructs ODT to establish a breakpoint at the location specified
before the B. If you type B alone, ODT removes any previously
established breakpoint and restores the original contents of the break
location. You may change a breakpoint to another location whenever
ODT is in control by simply typing nnnnB, where nnnn is the new
location. Only one breakpoint may be in effect at one time;
requesting a new breakpoint removes any previously existing one.

You may not set a breakpoint on any of the floating-point instructions
that appear as arguments of a JMS.

The breakpoint (B) command does not make the exchange of ODT
instruction your instruction, it only sets up the mechanism for doing
so. The actual exchange does not occur until you execute a "go to" or
a "proceed from breakpoint” command.

When, during execution, vyour program encounters the location
containing the breakpoint, control passes immediately to ODT (via
location 0004). ODT saves the C(AC) and C(L) at the point of the
interruption in special locations accessible to ODT. Your instruction
that the breakpoint was replacing is restored before the address of
the trap and the content of the AC are printed. ODT has not yet
executed the restored instruction. It will not until you give the
"proceed from breakpoint" command. Any user location, including those
containing the stored AC and Link, can now be modified in the wusual
manner. You can also move or remove the breakpoint at this time.

An example of breakpoint usage follows the section "Continue and
Iterate Loop..."

A - Open C(AC)

When ODT encounters the breakpoint it saves the C(AC) and C(L) for
later restoration. Typing A after having encountered a breakpoint
opens for modification the location in which the AC was saved and
prints its contents. You may now modify this location in the normal
manner (see Slash), and the modification will be restored to the AC
when you give the "proceed from breakpoint" command.

19-4

OCTAL DEBUGGING TECHNIQUE (ODT)

Open C(L)

Typing L opens the Link storage location for modification and prints
its contents. You may modify the Link location as usual (see Slash),
and that modification will be restored to the Link when you give the
"proceed from the breakpoint" command.

C - Proceed (Continue) from a Breakpoint

Typing C after ODT encounters a breakpoint causes ODT to insert the
latest specified breakpoint (if any), restores the contents of the AC
and Link, executes the instruction trapped by the previous breakpoint,
and transfers control back to your program at the appropriate
location. Your program then runs until ODT encounters the breakpoint
again.

NOTE

If you do not encounter a breakpoint set
by oDT while ODT is running your
program, the instruction that causes the
break to occur will not be removed from
the program.

nnnnC - Continue and Iterate Loop nnnn Times Before Break

You may wish to establish the breakpoint at some location within a
loop of your program. Since loops often run to many iterations, some
means must be available to prevent a break from occurring each time
ODT encounters the break location. This is the function of nnnnC
(where nnnn is an octal number). After ODT encounters the breakpoint
for the first time, this command specifies how many additional times
the loop will repeat before another break is to occur. The section on
the B command describes the break operations.

The following program, which increases the value of the AC by
increments of 1, illustrates the use of the Breakpoint command.

X200

0200 %200
00200 7300 CLA CLL
00201 1206 Ay TAL ONE
00202 2207 E» ISZ CNT
00203 5202 JMP E
00204 5201 JMFP A
00205 7402 HLT
00206 0001 ONE» i
00207 0000 CNT» 0

$

X200
A 0201
E 0202
CNT 0207
ONE 0206
0201E
200G
00201 (030000
c
00201 (0370001
c
00201 (030002
4C

00201 (070006

19-5

OCTAL DEBUGGING TECHNIQUE (ODT)

You have now loaded and started ODT. ODT inserts a breakpoint at
location 0201. Execution stops here, showing the AC initially set to
0000. The Proceed command (C) executes the program until ODT
encounters the breakpoint again (after one complete loop), and shows
the AC to contain a value of 0001. Execution continues again,
incrementing the AC to 0002, At this point, use the command 4C,
allowing execution of the loop to continue 4 more times (following the
initial encounter) before stopping at the breakpoint. The contents of
the AC have now incremented to 0006.

M - Open Search Mask

Typing M opens for modification the location containing the current
value of the search mask and prints its contents. Initially the mask
is set to 7777. You may change it by opening the mask location and
typing the desired value after the value that ODT printed, then
closing the location.

M Line Feed - Open Lower Search Limit

The word immediately following the mask storage location contains the
location where the search will begin. Typing the LINE FEED key to
close the mask location opens the lower search limit for modification
and prints its contents. Initially the lower search limit is set to
0000. You may change it by typing the desired lower limit after the
one ODT printed, then closing the location.

M Line Feed - Open Upper Search Limit

The next sequential word contains the location where the search will
terminate. Typing the LINE FEED key to close the lower search limit
opens the upper search limit for modification and prints its contents.
Initially, the upper search 1limit is the beginning of ODT itself,
7577. You may also change it by typing the desired upper search limit
after the one ODT printed, then closing the location with the RETURN
key.

nnnnW - Word Search

The command nnnnW (where nnnn is an octal number) will conduct a
search of a defined section of memory, using the mask and the lower
and upper limits you have specified, as indicated above. Use the word
searching operations to determine if a given guantity is present in
any of the locations of a particular section of memory.

The search operates as follows: ODT masks the expression nnnn you
type preceding the W, and saves the result as the guantity it is
searching for. (Do all masking by performing a Boolean AND between
the contents of the mask word, C(M), and the word containing the
instruction ODT will mask.) ODT then masks each location within your
specified 1limits and compares the result to the gquantity it is
searching for. If the two quantities are identical, ODT prints the
address and the unmasked contents of the matching location, and the
search continues until ODT reaches the upper limit.

A search does not alter the contents of any location. The following
example 1is for a search of 1locations 3000 to 4000 for all ISZ
instructions, regardless of what location they refer to (that is,
search for all locations beginning with an octal 2).

19-6

OCTAL DEBUGGING TECHNIQUE (ODT)

M/7777 7000 Change the mask to 7000, open lower
7453/5273 3000 search limit.
Change the lower limit to 3000, open upper
limit,
74%54/1335 4000 Change the upper 1limit to 4000, close
20004 location.
00005 /2331 Initiate the search for ISZ instructions.
00006 /2324 This section of core has 4 1SZ
00033 /2575 instructions.

19.4 ADDITIONAL TECHNIQUES

19.4.1 Current Location

ODT remembers the address of the current location, or last 1location
examined, which remains the same, even after you type the commands G,
C, and B. You may open this location for inspection by typing the
slash (/) character.

19.4.2 1Indirect References

When ODT encounters an indirect memory reference instruction or an
address constant, open the actual address by typing and < (SHIFT /N
and SHIFT /O, respectively).

19.5 ERRORS

The only legal inputs are control characters and octal digits. Any
other character will cause ODT to ignore the character or line and to
print a question mark. Typing G alone is an error. You must precede
G with an address to which control will be transferred. Typing G by
itself will cause control to be transferred to location 0.

19.6 PROGRAMMING NOTES SUMMARY

ODT will not turn on the program interrupt, since it does not know if
your program 1is using the interrupt. It does, however, turn off the
interrupt when it encounters a breakpoint, to prevent spurious
interrupts.

Breakpoints are fully invisible to "open location" commands; however,
you may not place breakpoints in locations your program will modify in
the course of execution, or ODT will destroy the breakpoint. Use
caution in placing a breakpoint between a call to USR function code 10
and the following call to USR function code 11.

If your program does not encounter a trap that ODT set, the breakpoint
instruction will remain.

You can use ODT to debug programs using floating-point instructions

because the intercom location is 0004 and because you can set
breakpoints on a JMS with arguments following.

19-7

OCTAL DEBUGGING TECHNIQUE (ODT)

19.7 SUMMARY OF ODT COMMANDS

Table 19-1 presents a brief summary of the ODT commands. You
input all addresses as 5 digits; they are printed as 5 digits.

Table 19-1
ODT Command Summary

can

Command

Meaning

nnnnn/

nnnn;

RETURN key

LINE FEED key

n+

n-

4 or
(up—-arrow or
circumflex)

enter a new value for that location or
the location.

Reopen latest opened location.

skipped.

Close the previously opened location.

contents of that location.
Open the current location plus n
location.

Open the current location minus n
modification and print its contents.

the location referenced, printing
contents.

NOTE

No distinction is made between
instruction op-codes when using ~.
Thus, all op-codes (0-7) are
treated as memory reference
instructions. Also, exercise great
care when wusing "~ with indirectly
referenced auto-index registers.
If you use ~ in this case, the
contents of the auto-index register
are incremented by one. Check to
see that the register contains the
proper value before proceeding.

Open location designated by the octal number
nnnnn, where the first digit represents the
memory field. ODT prints the contents of the
location and a space, and waits for you to
close

Deposit nnnn in the currently opened
location, close that location, and open the
next sequential location for modification.
You can deposit a series of octal values in
sequential locations through use of the
character. Multiple ;'s skip a memory
location for each ; typed and prepare
insert subsequent values beyond the one(s)

’

to

Close location; open the next sequential
location for modification, and print

the

for

modification and print the contents of that

for

Close location, take contents of that
location as a memory reference, and open

its

(continued on next page)

19-8

OCTAL DEBUGGING TECHNIQUE (ODT)

Table 19-1 (Cont.)
ODT Command Summary

Command

Meaning

« or _
(back-arrow
or underline)

nnnnnG

nnnnnB

nnnnC

M LINE FEED

M LINE FEED

nnnnW

Close 1location, take contents of that
location as a 12-bit address, and open that
address for modification, printing its
contents.

Transfer control of program to location
nnnnn, where the first digit represents the
memory field.

Establish a breakpoint at location nnnnn,
where the first digit represents the memory
field. ODT allows only one breakpoint at
any given time.

Remove the breakpoint.

Open for modification the location where
ODT stored the contents of the accumulator
when it encountered the breakpoint.

Open for modification the location where
ODT stored the contents of the link when it
encountered the breakpoint.

Proceed from a breakpoint.

Continue from a breakpoint and iterate past
the breakpoint nnnn times before
interrupting your program at the breakpoint
location.

Open the search mask, initially set to
7777, which you can change by typing a new
value.

Open the lower search limit. Type in the
location (4 octal digits) where the search
will begin.

Open the upper search limit. Type in the
location (4 octal digits) where the search
will terminate.

Search the portion of core as defined by
the upper and 1lower limits for the octal
value nnnn. Search can only be done on a
single memory field at a time. See the F
command.

Open for modification the word containing
the data field which was in effect at the
last breakpoint. Contents of D always
appear as nmultiples of 10(8) - i.e., 10
means field 1, 20 field 2, etc.

(continued on next page)

19-9

OCTAL DEBUGGING TECHNIQUE (ODT)

Table 19-1 (Cont.)
ODT Command Summary

Command

Meaning

CTRL/O

F

RUBOUT key

Stop any printing currently in progress.

Open for modification the word
the field used by ODT in the
command, in the < and -
addressing) commands, or in
breakpoint (depending upon which
most recently. The contents
always expressed as multiples of
in the D command).

containing
W (search)
(indirect
the last
was used
of F are
10 (8) (as

Cancels previous number typed, up to the

last non-numeric character typed.

19-10

CHAPTER 20

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Use PIP to transfer files between devices, to merge and delete
files, and to list, zero, and compress directories.

20.1 CALLING AND USING PIP
To call PIP from the system device, type:
R FIF

in response to the Keyboard Monitor dot. The Command Decoder then
prints an asterisk in the left margin of the teleprinter paper and
waits to receive a line of I/O files and options. PIP accepts up to
nine input files and performs output to a single output file; you
generally place options at the end of the command string.

Since PIP performs file transfers for all file types (ASCII, Image
or SAVE format, or Binary), there are no assumed extensions PIP
assigns to file names for either input or output files. You must
specify all extensions.

Following completion of a PIP operation, the Command Decoder again
prints an asterisk in the left margin and waits for another PIP I/0
specification line. You can return to the Keyboard Monitor by
typing CTRL/C or by terminating the specification line with the
ALTMODE key.

20.1.1 PIP Options

Table 20-1 details the options allowed on a PIP I/0 specification
line. Generally, you indicate /A, /B, or /I for each transfer; if
you have specified none of these, the system proceeds as if you had
typed /A.

Table 20-1
PIP Options
Option Meaning
/A Transfer files in ASCII mode. PIP modifies the file as

rubouts and it reduces leader/trailer code to

below) .

(continued on next page)

20-1

it copies it: it deletes embedded blank tape and

standard 1length. PIP may also do some editing of the
input file under control of the /C and /T options (see

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 20-1 (Cont.)
PIP Options

Option

Meaning

/B

/C
/D

/E

/F
/G

Transfer files in Binary mode (used for absolute and
relocatable binary files). PIP reduces leader/trailer
code to a standard length, but it does not recalculate
the checksum.

NOTE

If you combine several absolute binary files
into one, indicate the /S option to the
Absolute Loader in order for the files to 1load
properly. (The Linking Loader will not load
combined files.)

Eliminate trailing blanks. Valid in ASCII mode only.

Delete the o0ld copy of the output file before doing any
data transfer. If you do not use /D, PIP will not
delete the old copy until it has processed all input.
For example:

_!DTAl20FILEﬁDTA2:NFILE/D
will first delete file OFILE on DTAl, and then transfer
the data from NFILE to a new OFILE. /D is useful when
the output device does not have room for both the old
file and the new file.

You may also use /D to delete up to three files at a

time by specifying the files to be deleted as output

files and not specifying any input files. For example:
XOLDARC»DTA3FILES/D-

This command string deletes OLDABC from DSK and FILES
from DTA3. .

List directories in extended form (the lengths of the
empty files are also listed).

List directories in short form (file names only).

Ignore any errors that occur during a file transfer and
continue copying.

(continued on next page)

20-2

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 20-1 (Cont.)
PIP Options

Option

‘Meaning

/1

/0

Transfer files in image mode. Used to transfer core
image (SAVE format) files, and any other files which
do not fall into either ASCII or Binary categories.

This option always opens the output file even if you
specified no input files. Thus, the /I combined with
the =n option allows you to substitute a named file
for an empty one. For example, suppose you
accidentally deleted a 23-block file named IMPORT.PA.
You can recover it with the following command:

KIMFORT.FAL231/1=27
Note that 23(10) = 27(8).

Save n extra words per file entry in the directory to
contain descriptive information about the file (only
the 2 1low order octal digits on nnnn are
significant). For use with the /Z and /S options
only. Typing =1 allows PIP to automatically store
the date of the file creation in the directory. (=1
is assumed after /2 or /S options unless otherwise
specified. Specifying =0 will still reserve one
extra word per entry.) Specifying =100 will reserve
no extra words per entry.

If you include an = option with an image mode (/I)
transfer, the 1low order 12-bits of the = option
specify the desired length with which to close the
output file. PIP gives the output file this length
except in the following two cases:

1. If the data written is greater than the specified
length, PIP gives the output file its correct
size.

2. 1If the length specified is greater than the empty
space available, PIP transfers the data but does
not close the file. PIP prints the error
message:

MURITOR ERROR 6 AT e
(DIRECTORY OVERFLOW)

and control returns to the Keyboard Monitor. PIP
does not destroy data in the file following the
EMPTY.

Okay to compress files or to =zero the directory.
When wused with the /S or /Z option, /0 prevents the
messages ARE YOU SURE? and ZERO SYS? from printing.
The system assumes you want the /S or /Z option.

(continued on next page)

20-3

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 20-1 (Cont.)
PIP Options

Option Meaning
/S Move all files from the input device to the output
device, eliminating any embedded empty files. You
should explicitly state all device names, as no
default devices are assumed. The directory of the
output device will contain only those files that
appeared on the input device. Whenever a /S is
initiated, PIP asks:
ARE YOU SURE?
Respond with a "Y" if you want the compression;
typing any other character aborts the command.
NOTE
When you use the /S option, PIP reads the
output device directory to determine whether
it is a system directory. If a system exists
on the output device, PIP will preserve that
system on the /S transfer. To eliminate the
system directory, perform a /Z before the /S.
In addition to compressing directories, /S provides a
means of copying one device to another. You can copy
DECtapes, for example, by compressing one DECtape
onto another tape.
/T Perform the following conversion of special
characters:
Character Is Converted To:
TAB enough spaces to reach the next TAB
stop (every eighth position)
Vertical
TAB 5 LINE FEEDs
FORM FEED 9 LINE FEEDs
/T option is valid in ASCII mode only.
/v Print the current version number of PIP. You should

include this option in the first command line entered
after you call PIP. PIP prints the version number on
the console terminal.

(continued on next page)

20-4

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 20-1 (Cont.)
PIP Options

Option

Meaning

/Y

/X

Copy the 0S/8 System Area (records 0, 7-67) between
the output and first input file. Both devices must
be file-structured devices. If you specified no file
name after a device name, the System Area of that
device is assumed. If you use the /Z option with /¥,
PIP places a zeroed system directory on the output
device before the system transfer takes place. A
system directory indicates that file storage starts
at record 70 rather than record 7.

Zero directory of output device before file transfer.
Before using a DECtape for the first time, always use
the /2 option to create an empty file directory. No
input files are specified, for example:

XOTAZ2:/Z-.=1

PIP uses one extra word per entry if you specify no
"=", Thus, the DATE word is always left available in
a new directory.

If you attempt to zero the directory of the system
device, the message:

ZERD SYS?

appears. A response of 'Y' will zero the directory;
any other response will abort the command and return
control to the Command Decoder.

NOTE

PIP does not ask the question ZERO SYS for a
handler that 1is co-resident with the SY¥S:
handler. For example, if both SYS: and DTAO
are LINCtape 0, a request to zero LINCtape 0
will not produce the gquestion. This 1is a
potentially dangerous command.

No data transfer occurs if you do not specify any
input files. Thus, as mentioned previously, you can
use /Z to zero a directory, and /D to delete a
permanent file without creating a file. For the
three directory listing options (/E, /F, /L), if you
do not specify an output device, the device TTY: 1is
assumed. If you do not specify an input device,
device DSK: 1is assumed.

20-5

PERIPHERAL INTERCHANGE PROGRAM (PIP)

20.1.2 Examples of PIP Specification Commmands

The following are legal command strings to PIP. When PIP has
completed an operation, control returns to the Command Decoder for
additional input.

Example 1, ASCII Transfer:

R FIF
XSYS:BLACK<PTR?

This command string transfers a tape from the paper tape reader to a
file on the system device under the name BLACK. PIP assumes that the
input tape is in ASCII format. (Control returns to the Command
Decoder; therefore, you need to give the .R PIP command only once.)

Example 2, ASCII File Merge:
XDTA3ZIMERGE<DTAL1FILEL1,FILE2

This command string instructs PIP to merge the ASCII files FILEl and
FILE2 on DTAl into one ASCII file, MERGE, on DTA3.

Example 3, Binary Transfer:
XEBIN.BNZFTRI/ER

The above command reads a binary paper tape from the paper tape reader
and creates a binary file BIN.BN on the device DSK.

Example 4, Image Transfer:
XSYSIGAG.SV-PALB.SV/T

PIP transfers the core image file PAL8.SV from the device DSK to
GAG.SV on the system device.

NOTE

A problem occurs when you transfer files
longer than 255 blocks in Image Mode
from a directory device. If you attempt
this, the transfer will not end with the
real end-of-file, but will continue
until you reach the output limit; an
error message will occur. For example,
trying to transfer FORT.PA or SABR.PA
from the directory device using 1Image
Mode will cause this error. Use ASCII
mode for all PIP transfers of this type,
or use the FOTP program.

Example 5, Directory Listing:
XTTY!-/E

This command string produces an extended listing of the device DSK on
the Teletype. An extended 1listing contains all files with their
associated lengths and all empty spaces in the directory. For
example, an extended 1listing might appear as follows. (The current

PERIPHERAL INTERCHANGE PROGRAM (PIP)

date appears before the file listing provided you have given the DATE
command; see the section concerning the Keyboard Monitor for a
description of the DATE command.)

R/17/72

EGIT .SV 12 1/10/72
TEGT2 4 1/10/72
ARCD . DA i 2/17/72
SEMPTY> 7

TEST2 .RL 4 1/10/72

ZEMFTY, 702
70Y FREE_BLOCKS

The file lengths and number of free blocks are designated as decimal
values. The date of file creation is printed if at least one
additional information word is present in the directory (refer to the
section Additional Information Words in File Directories).

Example 6, Directory Listing:
* /F

This command produces a directory listing of file names only. Thus,
the preceding directory would appear on the teleprinter as follows:

2/17/72
EDIT .SV
TEST2
ARCD . DA
Tt T2 JRL
709 FREE BLOCKS

Example 7, System Area Transfer:
ADTALSHEAD- /Y

PIP transfers records 0 and 7-67 from SYS: to a file named HEAD on
DTAl.

Example 8, System Area Transfer:
IﬁYStfﬂTAIQHEAD/Y

PIP transfers the contents of the file HEAD on DTAl to the System Area
(records 0 and 7-67) of the system device. It also checks the input
file for validity before the transfer occurs.

Example 9, System Transfer with Directory Zero:

XDTAL-DTAO(YZ)

This first creates a zero system directory on DTAl, and then transfers
the system area from DTAO0 to the System Area on DTAl. A system
directory indicates that file storage begins at record 70 rather than
record 7.

Example 10, System Area Transfer:

ADTALITRANDTAZITRAN/Y
This command string instructs PIP to transfer TRAN from DTA2 to DTAl.
Since you used the /Y option, TRAN must be a copy of the 05/8 System
Area. However, since transfers of this type involve files on both the

I/0 devices and not the System Area, PIP treats the transfer as an
image transfer, and you can use either the /Y or /I options.

20-7

PERIPHERAL INTERCHANGE PROGRAM (PIP)

20.2 ADDITIONAL INFORMATION WORDS IN FILE DIRECTORIES

If a device has any additional information words specified in its
directory, 0S/8 automatically enters the last date specified in a DATE
command into the first of the additional information words when vyou
create a file on that device. Dates put into these additional words
appear in directory listings. Words after the first are not wused by
the 05/8 systenm.

Whenever you give a /2 or /S, you can specify additional words by a
/2=n or /S=n construction. You can change the number of additional
words by compressing a device onto itself. The system uses the first
additional information word for the file's creation date.
NOTE
DIGITAL 1initially creates the system

with one additional word in the file
directory.

20.3 PIP ERROR MESSAGES

Table 20-2 lists the PIP error messages and their meanings.

Table 20-2
PIP Error Messages

Message Meaning
ARE YOU SURE? Occurs when wusing /S option. A
response of Y will compress the files.
BAD DIRECTORY ON Occurs when:
DEVICE # n l. PIP is trying to read the
directory, but it 1is not a 05/8
directory.

2. The output device does not have a
system directory; that is, file
storage begins at record 7 (occurs
during a /Y transfer).

n is the number of the file in the
input file list.

BAD SYSTEM HEAD Occurs when you use the /Y option and
the area being transferred does not
contain 0S/8.

CAN'T OPEN OUTPUT Occurs when:
FILE 1. Output file is on a read-only
device.

2. No name has been specified for the
output file.

3. A /Y transfer to a non-directory
device has been attempted.

4. Output file has zero free blocks.

(continued on next page)

20-8

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 20-2 (Cont.)
PIP Error Messages

Message

Meaning

DEVICE # n NOT A
DIRECTORY DEVICE

DIRECTORY ERROR

ERROR DELETING
FILE

ILLEGAL BINARY
INPUT,FILE # n

INPUT ERROR,
FILE # n

IO ERROR IN (file name)
—CONTINUING

LINE TOO LONG IN
FILE # n

NO ROOM FOR
OUTPUT FILE

NO ROOM IN (file name)
-CONTINUING

OUTPUT ERROR

PREMATURE END OF
FILE,FILE # n

Occurs when:

1. Trying to list the directory of a
non-directory device.

2. The input designed in a /Y
transfer 1is not on a directory
device.

n gives the number of the device in
the input list.

Indicates an error has occurred while
reading or writing the directory
during a /S option. The option is
aborted; output is 1likely to be
garbled.

You attempted to delete a file that
does not exist. Check that the device
name was explicitly given for all
files.

Self-explanatory; n is the number of
the file in the input file list.

An input error occurred while reading
file number n in the input file list.

An error has occurred during a /S
transfer. The name of the file being
transferred is indicated.

In ASCII mode a line has been found
greater than 140 characters. Make
certain the file is an ASCII file. n
is the number of this file in the
input list.

Either the device or the directory
lacks room.

Occurs during use of the /S option.
The output device cannot contain all
of the files on the input device. The
message is printed for each file which
will not fit into the output device.
The file name is indicated.

Output error - possibly a WRITE LOCKed
device, parity error, or attempt to
output to a read-only device.

Occurs in Binary Mode (/B) only.
PIP found a physical end-of-file
before the final leader/trailer.

(continued on next page)

20-9

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 20-2 (Cont.)
PIP Error Messages

Message Meaning
SORRY - NO Occurs if:
INTERRUPTIONS 1. You type °c (CTRL/C) while

compressing a file onto itself;
the transfer continues.

2. You do a /Y transfer with system
device as the output device, or if
the transfer has both input and
output on the same device.

ZERO SYS? If you make any attempt to 2zero the
system device directory, this message
occurs. Responding with Y causes the
directory to be zeroed. Responding
with other character aborts the
operation.

20-10

CHAPTER 21

PIP10

PIP10 is designed to provide file compatibility with the DECsystem-10
computer. PIP10 is capable of transferring files to and from
DECsystem-10 formatted DECtapes, and it provides the facilities for
transferring ASCII, 1Image (PALl0 binary output), and sequenced ASCII
(LINED output) files.

PIP10 uses an internal DECsystem-10 DECtape routine. This routine
optimizes file storage in the same way that the DECsystem-10 Monitor
does, thus resulting in the most efficient algorithm for block
storage.

PIP10 has the following features:

e Automatically determines which of the specified DECtapes is a
DECsystem-10 tape (384(10) words/blocks).

® Works interchangeably on TC08 and TD83 DECtape controllers.

® Reads and writes to DECsystem-10 tapes in both forward and
reverse directions on TC08 tapes, forward only on TD83 tapes.

e Keeps the DECsystem-10 DECtape directory in core during the
file-copying operations of PIP10, thus eliminating the
necessity for rereading the directory. The directories are
purged from core when PIP10 reads another command line.

e Permits transfers between two 0S/8 devices as well as
transfers between two DECsystem-10 tapes.

e Zeroes DECsystem-10 DECtape directories, deletes DECsystem-10
files, and lists DECsystem-10 directories.

You cannot use PIP1l0 while running the 0S/8 BATCH program.

21.1 CALLING AND USING PIP10
To use PIP10, type:

R FIF10
PIP10 responds with an asterisk and waits to receive a command line of
I/0 files and options. The command line must have one output
specification and may have from zero to nine input specifications.
PIP10 merges multiple input files onto the output file.

A DECsystem-10 file name may have a 0- to 3-character file extension;
an 0S/8 file name may have a 0- to 2-character extension.

21-1

- PIP10

Since PIP10 automatically determines which DECtape mounted 1is a
DECsystem-10 tape, no indication for DECsystem-10 is necessary.

Following completion of a PIP10 operation, the PIP10 command decoder
again prints an asterisk 1in the left margin and waits for another
PIP10 I/0 command line. To return to the Keyboard Monitor, type
CTRL/C.

NOTE

PIP10 uses its own command decoder, not
that of the standard 0S/8; however, the
command decoders are functionally the
same.

21.2 HOW TO COPY LARGE FILES WITH PIP10 (SR)

The DIGITAL version of PIP10 V3 cannot copy an 0S/8 file greater than
255 blocks long in image mode.

The following patch creates a program called PIP10X (with version
number X3);: you may use it to copy large 0S/8 files in image mode.
However, this patch prevents you from copying concatenated input
files. Do not use this patch if you are concatenating several 0S/8
input files. Concatenate them first with PIP, then use PIP10X.

_«GET SYS FIFP10

00T

3036/1034 620157164256211,524455700
431774026 4030

~C

+SAVE SYS PIF10X

21.3 PIP10 OPTIONS

The following table details the various options allowed on a PIP10 I/O
command 1line. The general format for PIP10 command lines is the same
as that for the standard 0S/8 Command Decoder.

Option Meaning
/B Transfer files in DECsystem-10 binary mode. The output

device must be a DECsystem-10 DECtape.

/D Delete the o0ld copy of the output file before continuing the
transfer. If you do not use /D, PIP10 copies the file before
it deletes the old copy.

/F List the short form of DECsystem-10 DECtape directory.

/1 Copy in Image mode (compatible with PAL10 binary files)
rather than ASCII mode.

/L List the directory of the input device. This input device
must be a DECsystem-10 DECtape. If you specify no output
device, TTY is assumed to be the output device.

/P Preserve LINED sequence numbers in DECsystem-10 format.
Sequence numbers are normally deleted.

/Z Zero the output device directory. The output must be a
DECsystem—-10 DECtape.

21-2

PIP10

21.4 PIP10 EXAMPLES

The following examples assume that you have mounted a DECsystem-10
DECtape on DTA7. In an actual operation, you may use any unit since
PIP10 can access any of the tape drives.

Example 1:

XDTAZIFILE.EXT-FILE.EX/Z

The command line in Example 1 zeroes the DECsystem-10 directory on
DTA7 and transfers FILE.EX from DSK to the DECsystem-10 DECtape on
DTA7. If you do not use /Z, make sure that the DECsystem-10 tape has
a valid directory on it before you attempt transfers.

Example 2:

XOTAZIFILEL.EXT-DTALIF1sFTR: sy DTAZ7IPARZYTTY:

Example 2 merges five input files onto one DECsystem-10 output file
(FILE.EXT) . The first input file is an 0S/8 file (P1l) on DTAl; the
second and third files are read from the paper tape reader; the
fourth is a DECsystem-10 file named PARZ on DTA7; and the fifth is
from the terminal. This example shows that input files need not be
all 0S/8 or all DECsystem-10.

Example 3:

XOTALIFILE.ENL10DDOTAZ7IFILE.RIN/I

The command line in Example 3 copies the DECsystem-10 file (FILE.BIN)
in Image mode since the DECsystem-10 file is a binary file. You must
use /I to copy DECsystem-10 binaries. Note the use of sguare brackets
[l in the command; they have the same meaning as in the 0S/8 command
decoder.

Example 4:

XOTAZIFILE.EXT/D

Example 4 indicates the deletion of a DECsystem-10 file (FILE.EXT)
from a device.

Example 5:

XDOTAZ7:/L

If DTA7 has a DECsystem-10 DECtape mounted, the command 1line in
Example 5 will produce a directory listing of the device.

21.5 ERROR MESSAGES

All errors cause PIP10 to abort the current command and print another
asterisk. You can then enter the command correctly. (See Table
21-1,)

21-3

PIP10

Table 21-1

PIP10 Error Messages

Message

Meaning

DEVICE FULL

ERROR DELETING FILE

FILE NOT FOUND

I/0 ERROR

NO SUCH DEVICE

NOT 0S8 FILE

NOT PDP-10 FILE

OUTPUT FILE OPEN ERROR

PIP10 CANNOT BE CHAINED TO

SYNTAX ERROR

DECsystem-10 ran out of space on the
output file during a transfer.

The output file of a /D command was
not found, or an error deleted the
file.

The requested file was not found on
the specified device.

I/0 device error, for example, parity,
write lock, out of paper.

Device name is not legal in this 0S/8
system.

The output device specified with a /L
or /F option was not an 0S/8 device or
file.

The output device specified with a /Z
option was not a DECsystem-10 tape, or
the input device specified with a /L
or /F option was not a DECsystem-10
tape.

PIP10 could not open the output file.
Check output directory to ensure that
enough space exists on the device.
Self-explanatory.

Invalid PIP10 command line.

CHAPTER 22

RESOURCES (RESORC)

Using RESORC, you can determine the device handlers present on a given
0S/8 system. Other information about the handlers is available
through the use of RESORC options.

22,1 CALLING AND USING RESORC
To call RESORC from the system device, type:
_+R RESORC

in response to the Keyboard Monitor dot. You may also call RESORC via
the CCL command RES (see the CCL section in Chapter 1). The Command
Decoder prints an asterisk in the left margin and waits to receive a
line of I/O files and options. RESORC accepts up to nine input files
and performs output to a single output file; you generally place
options at the end of a command string.

The output specification is the device where you are sending the
RESORC 1listing (specifying a file name and extension is optional). 1If
you do not specify an output device, TTY is assumed. If no file name
is specified, RE 1is assumed. If you do not specify a file name
extension, .LS is assumed.

The input specification may be one of three types:

e No input specification
If you do not enter an input specification, the 0S/8 system
device is assumed.

e A device name only (dev:)

If the input specification is a device name only, the device
must be file-structured and 1is presumed to contain a valid
0S/8 directory and Keyboard Monitor. The device handlers
built into the system on that device are the ones RESORC
lists. These handlers are not available to you unless you
bootstrap onto the specified device (see the BOOT program in
this chapter).

@ A device and a file name (dev:file.ex)

If you use this type of input specification, the file must be
a system-head file. (The /Y option in PIP creates such files
which are copies of the system portions of devices.) If vyou
specify no file name extension, the extension .SY is assumed.
RESORC prints the handlers in the system that were saved on
the specified file. System-head files are 50 (decimal) blocks
long.

22-1

RESOURCES (RESORC)

22.2 RESORC OPTIONS

RESORC has three operating modes specified by options in the command
line. These modes are:

Option Mode
/E Extended mode -- detailed handler information
/F Fast mode -- l-line printout (default)
/L Limited mode -- 3-column printout

22.2.1 Fast Mode (/F Option)

If you specify the /F option in a RESORC command line, or if you
specify no options, RESORC prints the permanent device names for
handlers on the system. If RESORC cannot determine the ASCII device
name for one of the devices, it prints the internal octal
representation of the device name and encloses it in parentheses.
(The 0S/8 Software Support Manual includes this octal representation.)
For example:

+R RESORC

X/F
SYS,DSKsDTA2,DTAQsIITAL, (4667) s TTYSLFT

The first two devices are always SYS and DSK. When you use the fast
mode, the devices are separated by commas and listed in order of their
internal device numbers.

22.2.2 Limited Mode (/L Option)

If you use the /L option in a RESORC command line, RESORC prints the
handler information in three columns. For example:

_+R RESORC
X/L

128 FREE ELOCKS

NAME TYFF USER
™73 R ARF]
OSK__RRBE IN
DTAO TCOB 0
TTY TTY

LFT _LFTR_LFT

08/8 V3F

Preceding the table of device names, RESORC prints the number of free
blocks on the device. This information 1is not available for
system-head.

The first column (NAME) lists the permanent names of devices on the
system. The second column (TYPE) 1lists the physical type of the
handler. O0S/8 assigns a unique number to each type of device. RESORC
associates this number with a name as listed in Table 22-1. Note that
different devices which are similar in function have the same internal
type code. For example, line printers LP08, LS8E, and L645 have an
internal code of 04.

RESOURCES (RESORC)

The third column (USER) lists the name given to the device with the
Monitor ASSIGN command. If RESQORC cannot determine the name from the
internal octal, it prints the octal code enclosed in parentheses.

Table 22-1
RESORC Device Types
Internal RESORC
Type Code Name Explanation
00 TTY Console terminal
01 PTR Paper tape reader
02 PTP Paper tape punch
03 CR8E Card reader
04 LPTR Line printer
05 RK8 RK8 disk
06 RF08 RF08 disk (1 platter)
07 RF08 RF08 disk (2 platter)
10 RF08 RF08 disk (3 platter)
11 RF08 RF08 disk (4 platter)
12 DF32 DF32 disk (1 platter)
13 DF32 DF32 disk (2 platter)
14 DF32 DF32 disk (3 platter)
15 DF32 DF32 disk (4 platter)
16 TCO08 TC08 DECtape
17 LINC LINCtape
20 TM8E Magnetic tape
21 TD8E TD8E DECtape
22 BAT Batch input handler
23 RK8E RK8E disk
24 NULL NULL handler
27 TABE Cassette
30 VR12 PDP-12 scope

DIGITAL reserves codes 25-26 and 31-37 for future use. Codes 40-57
are reserved for user handlers.

22.2.3 Extended Mode (/E Option)

When you use the /E option in a command 1line, RESORC provides more
detailed information about the handlers configured into the system.
The /E option produces a table with the following headings.

Heading Meaning

Internal device number for the handler. If a number is
missing, there is no internal number for this handler.

NAME Permanent device name for the handler. If RESORC
cannot determine the name, it prints the internal
coding.

TYPE Type of device as listed in Table 22-1.

MODE One or more of the following three letters:

R The handler may be used for reading.
W The handler may be used for writing.
F The handler controls file-structured devices.

22-3

Heading

S1zZ

BLK

KIND

Kind

AS33
KL8E
KS33
PT8E
KS33
PT8E
026

029

LPO8
LS8E
LPSV

LV8E

L645

The size of the device in decimal 0S/8 blocks.

RESOURCES (RESORC)

Meaning

only applicable for file-structured devices.

The block on the system device
resides.

entry

If this number

core location 07600.

where

This entry tries to differentiate the

specifically than the TYPE
devices of the same type have
there

blank.

column.

same

has no

this
followed by a +,
indicates that the handler is two pages long. If this
is SYS, the handler is permanently resident in

handler
Since

device
may be several handlers for the same device.
the device type has only one handler, this entry may be
The KIND specification
user-written handlers.
be on the system are as follows.

meaning for
The kinds of handlers that

Type Description How Identified

TTY l1-page handler by number of pages

TTY 2-page handler by number of pages

PTR low-speed reader by IOT codes

PTR high-speed reader by IOT codes

PTP low-speed punch by IOT codes

PTP high-speed punch by IOT codes

CRS8E DEC-026 card codes by table codes

CR8E DEC-029 card codes by table codes

LPTR old LP08 handler location dependent

LPTR old LS8E handler location dependent

LPTR LP08/LS8E/LVSE location dependent
handler

LPTR LPSV altered for location dependent
LV8E

LPTR Anelex line printer location dependent

Unit -- the particular unit number of a multiple

device handler.

many as four physical drives (0, 1, 2, 3)

system.

0S/8 considers the

drive as two logical units.

unit

Since the U column in the printout has space for only
character, RESORC numbers the logical units from 0
The following table

one
to 7.
between

disk

the wupper half is the B unit.
consists of two logical units called A2 and B2.

the U printout,

physical device, for RKS8E.

|

SO WO

Logical
Unit

AQ
BO
Al
Bl
A2
B2
A3
B3

22-4

the correspondence

logical and the

cartridge
The lower half

unit,

is the

Thus drive 2

Physical
Device

WWNONNHFOO

This is

handler
this

more
several
code,

unit
For example, the RK8E disk can have as
on an 0S/8
in each

ENT

USER

In addition

to

RESOURCES (RESORC)

Version number (letter) of handler. No entry means the
handler predates 0S/8 Version 3. Version numbers are
of the form A-Z. The 6-bit of the ASCII representation
of the handler version letter resides in the handler's
entry point location. For example, a handler with a
version A has a representation of 0l1. (See Appendix A
for a list of the 6-bit octal codes.)

The relative entry point of the handler.

Same as for /L option. Your current name for the
handler as assigned by the Monitor ASSIGN command.

the preceding, the /E option also provides the

information. If you specified a device, as opposed to a

system-head file, RESORC prints:

of files in directory

of blocks used

of directory segments used

of free blocks

of empties or a blank to indicate a single empty

of additional information words

also lists the following:

of free device slots

of free block slots

version number of Monitor if device is a system device

following
e number
e number
e number
e number
® number
e number
RESORC
® number
e number
)
_«R RESORC
X/E

164 FILES IN 1025 BLOCKS USING 6 SEGMENTS

2167 FREE BLOCKS (14 EMPTIES)

$# NAME TYPE MODE SIZ BLK KIND U V ENT USER
01 SYS RKBE _RWF 3248 SYS OB 07
02 DSK RKRHBE _RWF 3248 SYS OB 07
03 DTAQO TOBE RWF_ 737 16+ TIBA 0 A 10
04 DTAl THBE RWF__737 14+ TOBA 1 A 14
05 RKBO RKBE RWF 3248 SYS 1B 21
06 TTY TTY RuW 17+ KL8E C 176
07 FTP PTP W 20 PTS8E A 00
10 PTR _PTR R 20 PTSE A 112
11 LPT LPTR M 21 LPSV B 03

FREE DEVICE SLOTS: 06, FREE BLOCK SLOTS! 04

0s/8 V3F

RESOURCES (RESORC)

22.3 RESORC ERROR MESSAGES

Table 22-2 lists messages that may appear during a RESORC operation.

Table 22-2
RESORC Error Messages

Message

Meaning

?BAD DIRECTORY

$BAD MONITOR

$DEV IS NOT FILE

STRUCTURED

?INPUT ERROR

$NON SYSTEM DEVICE

§NOT A SYSTEM HEAD

?0UTPUT DEVICE FULL

?0UTPUT DEVICE IS

READ ONLY

20UTPUT ERROR

?TTY DOES NOT EXIST

Input device directory cannot be read.

The input device may be a system device but
the Monitor cannot be accessed.

The input device specified is not a file-
structured device, e.g., PTR.

An input error occurred during a RESORC
operation.
The input device specified in a RESORC

command line is not an 0S/8 system device.

The file name
system-head file.

specified is not a

The output device specified does not have
enough room to copy the RESORC file.

The output device specified is a read-only
only device, for example, PTR.

An error occurred while attempting to
output during a RESORC operation.

You did not specify an output device in the
RESORC command line, and the TTY handler
does not exist on the 0S/8 system. See the
BUILD chapter for instructions on inserting
TTY handlers.

22-6

CHAPTER 23

RKLFMT DISK FORMATTER PROGRAM

The RK8E/RK8L disk formatter program writes and checks the format of
the complete disk cartridge. Only standard DIGITAL surface format is
available (that is, sectors numbered in the normal numerical seguence
0, 1, 2, 3, 4, 5, etc.). RKLFMT occupies locations 0000 to 4177 of
the current field.
The RK8L control, which can control up to 8 drives, will not run with
the DW8E bus adapter; the RK8L control uses IOTO0 for extended drives
4-7 (not available on the DWS8E).
RKLFMT requires the following hardware:
e PDP-8/E, 8/F, 8/M or 8/A Computer
Other family of 8-compatible computer with necessary DW8SE bus
adapter for RK8E control only.

o At least 4K of read/write memory, and at least 8K of memory is
needed for operation of the console package.

e ASR-33 teletype or equivalent
e RK8E disk control or RK8L disk control
® RKO05J or RKOSF disk drive(s)
NOTE
The RKOSF drive operates as two separate
units. When answering gquestions for

each separate unit, specify: DSKO0?,
DSK1?, DSK2?, etc.

23.1 RUNNING THE PROGRAM
To format an RK05, type the following command:
_+R RKLFMT
Mount the disk (write enabled) and enter the instructions that follow.

If the formatter program fails to operate correctly, run the following
programs:

e All basic and extended memory diagnostics

e For the RK8E control, run the RK8E diskless control test and
the RK8E drive control test.

e For the RK8L control, run the RK8L instruction test.

23-1

RKLFMT DISK FORMATTER PROGRAM

23.2 STANDARD TEST PROCEDURES

To run the formatter program, follow the procedure 1in Section 23.3.
The following two procedures describe the drive setup procedure for
the RKO5S5F and the drive cartridge mounting procedure for the RKO05J.

23.2.1

RK05J Drive Cartridge Mounting Procedure

The cartridge mounting procedure for the RK05J disk drive

below.

1.

12.

13.

23.2.2

Any deviation results in an error condition.

Set switch labeled RUN/LOAD to the LOAD position.
Turn AC power on.

Check that the light labeled PWR is on.

Wait for the light labeled LOAD to come on.

Verify that the lights labeled RDY, ON CYL, FAULT,
are off.

Open access door.

Insert cartridge.

Close access door.

Set switch labeled RUN/LOAD to the RUN position.
Wait for lights labeled RDY and ON CYL to come on.

Toggle the switch labeled WI PROT and check that
labeled WT PROT goes on and off.

is 1listed

WT, and RD

the 1light

Toggle the switch labeled WT PROT until light labeled WT PROT

goes off,

Check that the lights labeled FAULT, WT, RD, and LOAD are

off.

RKOSF Drive Setup Procedure

The drive setup procedure for the RKO5F disk drive follows. Any
deviation results in an error condition.

1.

Set switch labeled RUN/LOAD to the LOAD position.
Turn AC power on,
Check that the light labeled PWR is on.

Wait for the light labeled LOAD to come on.

Check that the lights labeled RDY, ON CYL, FAULT, WT and RD

are off.

Set switch labeled RUN/LOAD to the RUN position.

Wait for the lights labeled RDY and ON CYL to come on.

23-2

10.

RKLFMT DISK FORMATTER PROGRAM
Toggle the switch labeled WT PROT and verify that the 1light
labeled WT PROT goes on and off.

Toggle the switch labeled WT PROT until the light labeled WT
PROT goes off.

Verify that the lights labeled FAULT, WT, RD, and LOAD are
off.

23.3 FORMAT PROGRAM

1.

Make all drives ready to be formatted:

For RK05J drives, use the RK05 drive mounting procedure
(23.3.1).

For RKO5S5F drives, use the RK05 drive setup procedure
(23.3.2).

Set switch labeled RUN/LOAD to the LOAD position on all
drives that you are not formatting.

The TTY will type the following program name, information,
and questions.

RKSE/RK8L DISK FORMATTER PROGRAM
For each question type Y for YES or N for NO.
FORMAT DISK 0? (type Y or N)
FORMAT DISK 12? (type Y or N)
FORMAT DISK 2? (type Y or N)

FORMAT DISK 3? (type Y or N)

FORMAT DISK 4? (type Y or N)
FORMAT DISK 5? (type Y or N)
FORMAT DISK 6? (type Y or N)
FORMAT DISK 7? (type Y or N)

The program then types the following gquestion on the TTY:

ARE YOU SURE?

Typing N repeats all the previous questions. Typing Y
executes the operation selected.

Program execution is approximately 80 seconds for each disk
drive. After the program has formatted and checked all disks
selected, the TTY types the following pass-complete message
and question.

RKBE/RK8L DISK FORMATTER PASS COMPLETE
FORMAT SAME DISK(S) AGAIN?

If you want to repeat the operation selected, type Y. Typing
N repeats the initial start-up guestions.

23-3

RKLFMT DISK FORMATTER PROGRAM

23.4 ERRORS

When a recoverable error occurs, the TTY prints an ERROR HEADER and
error information pertaining to the failure. Possible error headers
are:

DISK DATA ERROR

READ STATUS ELFOR

WKLTE STATUG ERROR
KFCALTERATE STATUS ERROR

After the TTY types the error header, it prints some of the following
error information pertaining to the failure.

PC: Program Location of Failure

GD: Expected Information

EX: Extended Drive Bit

CM: Software Command Register

ST: Contents of Status Register

DA: Software Cylinder, Surface, and Sector Register
CA: Initial Current Address

AD: Address of Data Break

DT: Data Found During Data Break

After the TTY types the error information, it types one of the
following questions, asking the error recovery desired.

1. If the error was a recalibrate error, TTY types the following
question.

TRY TO RECAL IERATE SAME DISKN AGAINT?

Typing a Y repeats the recalibrate sequence on the disk in
error. Typing N moves the program to the next available
disk.

2, If the error was a write error the TTY types the following
question:

TRY TO FORMAT SAME CYLINDER AGAIN?

Typing Y repeats the write sequence on the current cylinder.
Typing N moves the program to the next sequential cylinder.

3. If the error was a read or check error, the TTY types the
following question:

TRY TO CHECK SAME CYLINDER AGAINT?

Typing a Y repeats the read and check sequence on the current
cylinder. Typing N moves the program to the next sequential
cylinder.

23.5 PROGRAM DESCRIPTION

The formatting is actually a function of the RK8BE or RKS8L control and
drive logic. The program writes data on every sector in the WRITE ALL
mode, then checks the data while in the READ DATA mode to verify that
the header words written on every sector are also correct. The READ
DATA MODE automatically performs a check header function.

23-4

RKLFMT DISK FORMATTER PROGRAM

The first two words of every sector are set to the absolute disk
address (that 1is, command register bits 9-11 and cylinder, surface,
and sector bits 0-11, respectively). The remainder of the data area
is set to all zeros when the data is written. Only the first two
words of every sector (that 1is, the addressing information) are
checked when data is read in the READ DATA mode.

23.6 CONTROL CHARACTERS

Use control characters to give the operator the ability to perform the
following functions.

NOTE

The program will respond to the control
character in five seconds or less.

CTRL/C Starts the monitor at location 7600.
CTRL/R Restarts the program.

CTRL/E Continues the program from an error if allowed by the
diagnostic or from a waiting statement.

CTRL/L Switches the terminal messages from the display to a
line printer. To restore the messages on the terminal,
type CTRL/L again. 1If no printer is available and you
type CTRL/L, the console package will wait for CTRL/C
or CTRL/R. The CTRL/L sends output to the line printer
and the program attempts to continue as if you typed a
CTRL/E.

CTRL/D Allows you to change the switch register during program
operation. Typing this character results in an
interrogation of the switch register question.

CTRL/S Stops program execution and waits in a 1loop for a
continue. The only way to continue is to type a
CTRL/Q, R or C. This is a nonprinting character.

CTRL/Q Causes continuation of a program after you type a
CTRL/S. This is a nonprinting character.

23.7 MISCELLANEOUS

23.7.1 Waiting Message

The waiting message gives you time to decide what control character to
type. This message appears at the end of a pass message if the
halt-on-pass bit is set. You may now use the control characters to
perform the needed function.

The waiting message is printed after an error message if the
halt-on-error bit 1is set. Here again you may use the control
characters.

The waiting message is printed if operator intervention is required.

23-5

RKLFMT DISK FORMATTER PROGRAM

23.7.2 End of Pass

The normal program pass complete as described in Section 23.4 is used.

23.7.3 Errors

The standard error reports described in Section 23.5 are used.

23.7.4 Location Changes

You can change the following location to meet the specific need to
modify the diagnostic.

3637 1Is the location set for the number of filler characters
after a CRLF set to four (4)

23-6

CHAPTER 24

RXCOPY PROGRAM

You can use the RXCOPY program to copy or transfer the entire contents
and system head of one RX floppy disk to another RX floppy disk. Use
this program only with RX permanent device names or a user-~defined
name that you have assigned to an RX device. Specifying file names in
the I/0 specification line results in an error message.

To load and run RXCOPY, type:

.R RXCOPY
*output dev:<input dev:/options

Example:

+R RXCOPY
XRXA1:<SYS?

When you have loaded RXCOPY and entered the I/0 specification line at
the keyboard, the program copies the input device to the output device
on a sector-by-sector basis. When the operation 1is complete, the
Monitor dot appears on the screen, and the specified output device
becomes an exact duplicate of the input device.

Table 24-1 lists the options for use with the RXCOPY program. These
options modify the RXCOPY operation.

Table 24-1
RXCOPY Options

Option Meaning

/P Pause and wait for your response before and after
execution of RXCOPY program.

/N Copy the contents of one device to another but don't
check them for identical contents unless otherwise
specified.

/M Check both devices for identical contents and list the
tracks and sectors that do not match but do not perform
a transfer unless otherwise specified.

/R Read every block on the specified device and 1list the
bad tracks and sectors but do not perform a transfer
unless otherwise specified.

/v Print the current version number of the RXCOPY program.

24-1

RXCOPY PROGRAM

If you specify no options, RXCOPY assumes both the /N and /M options.

If an error occurs during the execution of RXCOPY, RXCOPY aborts the
current job and control returns to the Monitor.

Table 24-2 lists the RXCOPY error messages and their meanings.

Table 24-2
RXCOPY Error Messages

Message Meaning
NO INPUT DEVICE No input device is specified.
CAN'T LOAD INPUT DEVICE The name of the input device specified

in the command line is not a permanent
device name.

CAN'T LOAD OUTPUT DEVICE The name of the output device
specified in the command line is not a
permanent device name.

COMPARE ERROR When using the /M option all the areas
that do not match are printed as
COMPARE ERRORS. Since this is a
non-fatal error, the RXCOPY operation
continues.

INPUT DEVICE READ ERROR Bad input, bad tracks or sectors.
Since this 1is a non-fatal error, the
RXCOPY operation continues.

OUTPUT DEVICE READ ERROR Bad data on output device, tracks and

sectors bad. Since this is a
non-fatal error, the RXCOPY operation
continues.

OUTPUT DEVICE WRITE ERROR Fatal output error. Since this 1is a
non-fatal error, the RXCOPY operation
continues.

24-2

CHAPTER 25

SET PROGRAM

With the SET program you can modify the operating characteristics of
05/8 according to the attributes you specify, and you can make
frequently required standard changes to system programs, especially
I/0 handlers. You can identify these changes by specifying certain
attributes in the SET command string, which has the following format:

.R SET
#SET device [NO] attribute [argument]
where:

SET is the operation you are performing.

device indicates the handler of the device you want
modified.

[NO] indicates that the attribute specified does not
apply. You cannot use [NO] with every attribute.

attribute is the characteristic you are modifying. (See
Table 25-1.)

[argument] is an optional parameter that you must supply for

certain SET commands.

SET error messages are listed in Table 25-2.

Table 25-1
SET Command Attributes
TTY Card Reader | Mag Tape SYS LPT Any Device
ARROW CODE n PARITY x| INIT xxxxx | LA78 FILES
CODE n FILES 0s8 LASA DVCODE
COL n 0578 LC LOCATION n=m
ECHO LVSE READONLY
ESCAPE WIDTH n | VERSION x
FILL BLOCK b
FLAG
HEIGHT m
LC
PAGE
PAUSE n
SCOPE
TAB
WIDTH n

SET PROGRAM

Table 25-2
SET Error Messages

Message

Meaning

?SYNTAX ERROR

?2UNKNOWN ATTRIBUTE FOR DEVICE dev

?CAN'T —-- DEVICE IS RESIDENT

?2CAN'T -- OBSOLETE HANDLER

2CAN'T -- UNKNOWN VERSION OF THIS HANDLER

?ILLEGAL WIDTH

?NUMBER TOO BIG

?CAN'T -- DEVICE DOESN'T EXIST

?2I/0 ERROR ON SYS:

Incorrect format used
in SET command or NO
specified when not
allowed.

An illegal attribute
was specified for the
given device.

No modifications are
allowed to the system
handler.

The handler has an old
version number.

The version of the
handler is not one
recognized, possibly
because it 1is a newer
version.

A width of 0 or a width
too large was
specified; or, for the
TTY, a width of 128 or
one not a multiple of 8
was specified.

The number specified
was out of range.

A nonexistent device
was referenced.

SET PROGRAM

25.1 TERMINAL ATTRIBUTES o

25.1.1 Arrow

Specifying this attribute causes each control character the KL8E
handler typed to be printed in the form:

~

X
where:
- indicates that you are typing a control character, and
X specifies which control character you are typing (100 + code
for control character).
Format:

.SET TTY [NO] ARROW
Example:

+SET TTY ARROW

If you type a CTRL/E character, by the KL8E handler, an "E is printed
on the terminal. Note that ARROW is the default,.

Using this attribute with the NO modifier causes each control
character the KL8E handler typed to print with no modification.

Example:

_LSET TTY NO ARROW
Now if the KL8E handler types a CTRL/E character, it will send a
CTRL/E (ASCII code 5) to the terminal. The result is that no
character is printed.

NOTE

On some terminals, the arrow () is
replaced by the circumflex (7).

25.1.2 CODE n
where n is an octal number in the range

1 <n<77
This command changes the internal IOT code for keyboard to n. The
internal device code for the teleprinter is set to n+l. For example,
if you have a VT05 hooked to your system with device codes of 40 and
41, you would type SET TTY CODE 40. SET will not permit the NO
restriction.

Example:

+SET TTY CODE = 3

25-3

SET PROGRAM

25.1.3 COLumn n
Specifying this attribute changes the default number of columns used
to print the directory (using the DIRECT command) to the decimal
number you specify as n. The initial default number of c¢olumns is
equal to one and the decimal number you specify should be in the range
of 1-7.
Format:

.SET TTY COL n
Example:

LSET TTY coL 3

Specifying this attribute does not change the behavior of the KL8E
handler. Also, you may not use the NO modifier with this attribute.

25.1.4 ECHO
Specifying this attribute causes all TTY characters typed at the
keyboard as input or received on the terminal as output to be printed.
Specifying this attribute affects the KLBE handler only and does not
affect character echoing by the Keyboard Monitor.
Format:

.SET TTY [NO] ECHO
Example:

SET TTY ECHO
If you do not want character echoing to take place, use the NO
modifier in the command line. If you specify the NO modifier, all TTY
characters on input or output are not printed and do not appear on the
terminal screen.

Example:

+SET TTY NO ECHO

25.1.5 ESCape

Specifying this attribute causes the escape character (ASCII code 33)
to print as a control character (see also ARROW attribute).

Format:

.SET TTY [NO] ESC
Example:

+SET TTY ESC

Specifying the NO modifier in the command line causes escape to print
as a dollar sign ($).

25-4

SET PROGRAM

Example:

+SET TTY NO ESC
The ARROW attribute can also affect escapes. Specifying NO ARROW

sends escapes to the terminal with no modification. This is useful
for sending escape sequences to a CRT terminal.

25.1.6 FILL

Specifying this attribute types two fill characters following a tab.
You should use this attribute only with the TAB attribute.

Format:
.SET TTY [NO] FILL

To remove these fill characters, use the NO modifier in the command
line.

Example:

.SET TTY NO FILL

25.1.7 FLAG
When you specify this attribute, the handler flags lower-case
characters on output by printing them as upper-case characters
preceded by a quote.
Format:

.SET TTY [NO] FLAG
Example:

+SET TTY FLAG

If you want to remove the quote preceding upper case characters, use
the NO modifier in the command line.

Example:

+SET TTY NO FLAG

25.1.8 HEIGHT m

Specifying this attribute changes the number of lines that are printed
on the terminal between pauses. The default value of m is 24 lines.

Format:
.SET TTY HEIGHT m
Example:

WSET TTY HEIGHT 12

This attribute has no meaning unless you also specify the PAUSE
attribute.

25-5

SET PROGRAM

25.1.9 LC

When you specify this attribute, the KL8E handler accepts lower case
characters on input.

Format:

.SET TTY [NO] LC
Example:

SSET TTY LC

Specifying the NO modifier in the command 1line converts lower-case
characters on input to upper case.

Example:

LSET TTY NO LC

25.1.10 PAGE

Specifying this attribute adds both the CTRL/S and CTRL/Q features to
the keyboard monitor.

Format and Example:
+SET TTY PAGE

When used with the NO modifier, this attribute removes the CTRL/S and
CTRL/Q features.

Example:

+SET TTY NO PAGE

25.1.11 PAUSE n
Specifying this attribute sets the pause time between terminal output
frames to the decimal number you specify as n. The time depends on
the cycle time of your machine.
Format:

.SET TTY PAUSE n
Example:

+SET TTY PAUSE S

If you want no pause to take place, specify either the NO modifier in
the command line or zero as n.

Example:
+SET TTY NO PAUSE
or

_SET TTY PAUSE 0O

SET PROGRAM

25.1.12 SCOPE

When you specify this attribute, the characters you erase with the
rubout or delete key disappear from the CRT screen. You should not
specify this attribute if you do not have a CRT.

Format and Example:

LSET TTY SCOPE

25.1.13 TaB

when you specify this attribute, the handler prints real tabs (ASCII
code 211). You can use this only if your handler has the TAB feature.

Format:

.SET TTY [NO] TAB
Example:

2SET TTY TAB
If your handler does not have the TAB feature, use the NO modifier in
the command 1line. When vyou specify the NO modifier, the handler
simulates all tabs as spaces.

Example:

+SET TTY ND TAB

25.1.14 WIDTH n

Specifying this attribute changes the width of the terminal to the
decimal number you specify as n. The decimal number you specify
should be a multiple of eight and in the range of 1-255. However, n
must not be 128. If your TTY handler does not have the tab feature,
the width you specified in the command line may not be your final
result. You may not use the NO modifier with this attribute. Placing
an equal sign (=) between the attribute and the decimal number you
specify is optional.

Format:
.SET TTY WIDTH n
Example:

SET TTY WIDTH 64

25-7

SET PROGRAM

25.2 CARD READER ATTRIBUTES

25.2.1 CODE n

When you specify this attribute, the card reader uses the card code
you specify.

Format:

.SET CDR CODE n
where:

n is a decimal number having a value of either 026 or 029.
Example:

+SET CDR CORE 026

You may not use the NO modifier with this attribute.

25.3 MAGNETIC TAPE ATTRIBUTES

25.3.1 PARITY x

When you specify this attribute, the parity check becomes either even
or odd.

Format:
.SET MTxx:PARITY x
Example:

+SET MTAOIFARITY EVEN

You may not use the NO modifier with this attribute.

25.3.2 FILES

When you specify this attribute, the handler will not issue an
automatic rewind when referencing block 0.

Format:

.SET MTxx [NO] FILES
Example:

+SET MTA1FILE

If you want the automatic rewind to take place when block 0 is
referenced, use the NO modifier in the command line.

25

)
©

SET PROGRAM

Example:

+SET MTAOIND FILES

25.4 SYSTEM ATTRIBUTES

25.4.1 INITIAL xxxxx
When you specify this attribute, the system device| executes the
command you specify as when the system is bootstrapped. This command
can contain a maximum of five characters excluding a RETURN key.
Format:

.SET device INIT xxxxxXx
Example:

+SET SYS INIT HELP
If you do not specify xxxxx, @INIT is assumed, and the system executes
the command in the file INIT.CM when bootstrapped. You must create
the INIT.CM file prior to bootstrapping.
If you do not want the system to execute special commands at system
bootstrap, use the NO modifier in the command line. When you specify
the NO modifier, the system prints the monitor dot immediately after
bootstrapping.
Example:

+SET SYS ND INIT

If you specify an initial command and you have bootstrapped the
system, this command destroys anything previously in memory.

25.4.2 0S8
Specifying this attribute modifies the system handler to be 0S/8.

Format and example:

SET SYS 0S8

You may not use the NO modifier with this attribute.

25.4.3 0878
Specifying this attribute modifies the system handler to be 0S/78.

Format and example:

+SET SYS 0578

You may not use the NO modifier with this attribute.

25-9

SET PROGRAM

25.5 LINE PRINTER ATTRIBUTES

25.,5.1 LA78

Specifying this attribute modifies the LPSV handler to handle an LA78
line printer.

Format and example:

+SET LPT LA78

25.5.2 [LAS8A

Specifying this attribute restores the LPSV handler to its original
state.

Format and example:

LSET LPT LABA

25.5.3 LC
When you specify this attribute, the handler prints lower-case
characters. You may use this attribute only with line printers that
can print lower-case characters.
Format:

.SET LPT:[NO] LC
Example:

LSET LPT:LC

Specifying the NO modifier in the command line converts lower-case
characters to upper case prior to printing.

Example:

_+SET LPTINO LC

25.5.4 LVSE

Specifying this attribute modifies the LPSV handler to work on an LV8E
line printer.

Format:
.SET LPT:[NO]LVS8E
Example:
_+SET LPT:LVSE
When you specify the NO modifier in the command 1line, this command

will work on an LP08 and LS8E line printer.

25-10

SET PROGRAM

Example:

+SET LPTINO LVSE

25.5.5 WIDTH n

Specifying this attribute sets the width of the line printer to the
decimal number you specify as n.

Format:

.SET LPT WIDTH n
where:

n is a decimal number in the range of 1-256.
Example:

+SET LFT WIDTH 80

You may not use the NO modifier with this attribute.

25.6 ANY DEVICE ATTRIBUTES

25.6.1 FILES

When you specify this attribute, the handler handles a file-structured
device.

Format:

.SET device [NO] FILES
Example:

_SET MTAOIFILES

If you want the handler to handle non-file structured devices, use the
NO modifier in the command line.

Example:

_+SET DTA1INO FILES

NOTE
This attribute remains in effect until

the next time you bootstrap, when the
original status will be restored.

25-11

SET PROGRAM

25.6.2 DVCode nn
Specifying this attribute sets the IOT device code the handler uses to
53377?ecimal number you specify as nn. This number should be from
Format:

.SET device DVC nn
Example:

_+SET RXAO DVC 64

You could use this example if you hooked up your diskettes to the
non-standard device code of 64. You may not use the NO modifier with
this attribute.

25.6.3 LOCation n=m or LOCation n

Specifying the first argument changes the contents of the location in
the handler you specify as n to contain the value you specify as m.
Both n and m are octal numbers.

where:
n is an octal number from 0-177 for one-page handlers and from
0-377 for two-page handlers.
m is an octal number from 0-7777.
Format:

.SET device LOC n=m
Example:

+SET LFT LOC 37-1234
When you specify the second argument, the system prints the current
contents of the location in the handler you specify as n. Follow this
with a slash. Enter a new value in that location by typing that value
followed by a carriage return. If you want to leave the contents of
that location unchanged, type a carriage return only.
Format:

.SET device LOC n

Example:

+SET FTF LOC 144

25-12

SET PROGRAM

25.6.4 READOnly

When you specify this attribute, the device specified becomes a
read-only device. Therefore, any output sent to this device causes an
error message informing you that the output device is a read-only
device.

Format:

.SET device [NO] READO
Example:

+SET TTY REALDO

To remove the READONLY attribute, use the NO modifier in the command
line.

Example:

_+SET TTY NO READOD

NOTE
The READONLY attribute remains in effect
only until the next time you bootstrap,

when 1its original status will be
restored.

25.6.5 VERSION x

Specifying this attribute changes the version number of the handler to
the letter you specify as x.

Format:

.SET device VERSION x
Example:

+SET TUIVERSION G

You may not use the NO modifier with this attribute.

25.6.6 BLOCK b, LOCation n=m or BLOCK b, LOC n

Specifying the first attribute changes the contents of the location in
the handler you specify as n, located in the block you specify as b.
The contents of that relative location changes to the value you
specify as m.

25-13

SET PROGRAM

where:
b is an octal number
n is an octal number from 0-177 for one-page handlers and from
0-377 for two-page handlers.
m is an octal number from 0-7777.
Format:

.SET device LOC n=m
Example:

.SET RKB1 LOC 10 = 2420
When you specify the second attribute, the system prints the current
contents of the location in the handler you specify as n, located in
the block you specify as b. Follow this with a slash. Enter a new
value in that 1location by typing that value followed by a carriage
return. If you want to leave the contents of that location unchanged,
type a carriage return.
Format:

.SET device LOC n

Example:

+SET LFT LOC 173

25-14

CHAPTER 26

SRCCOM

SRCCOM compares two source files line by line and prints all their
differences. Usually, the two files are different versions of a
single program. In this case, SRCCOM prints all the editing changes
that transpired between the two versions, making it a useful debugging
tool.

26.1 SRCCOM ASSEMBLY INSTRUCTIONS
To make SRCCOM.BN from SRCCOM.PA, type:

.R PALS
*dev:SRCCOM (,dev:SRCCOM.LS) <dev:SRCCOM

The listing file shown in parentheses is optional.
To make SRCCOM.SV from SRCCOM.BN, type:

.R ABSLDR
*dev: SRCCOMS
.SAdevSRCCOM

To load and save the binary papertape (DEC~S8-0SYSB-A-PBl7), type

.R ABSLDR
*PTR:$ ™ (Type any character in response to 7)
.SAVE dev SRCCOM

26.2 LOADING SRCCOM
To use SRCCOM, type:

_«R SRCCOM
XOUTFUT<INPUT1» INFUT2

INPUT1 and INPUT2 are both the source files you are comparing and the
input devices. You must specify both files, and they must be
non~empty. If you omit an input device, it is assumed to be DSK.

OUTPUT specifies the output file and device where the program will
list the differences. If you specify an output file name, the default
output device is DSK. If the output device is non~file structured, a
file name 1is unnecessary. If output is to a file~structured device,
you must specify an output file name. If no output specification
exists, TTY is assumed.

SRCCOM

Table 26~1 lists the run-time options accepted by SRCCOM.

Table 26-1
SRCCOM Run-Time Options

Option Meaning

/C Do not count differing comment fields as a
difference.

/S Do not compare tabs and spaces when considering lines
different.

/T Convert tabs to spaces on output.

/B Count blank lines in the comparison. A blank line is

considered as a carriage return only. 1In particular
SRCCOM does not treat a space and carriage return
combination under /S/B as a blank line.

/X Like /C but does not print comment fields on the
output file.

Examples:

.k SRCCOM
XOSK:DIFFIL<DTAL$ORIG,DTA2:COFY

Compare the source file ORIG on DTAl and COPY on DTA2, and store the
differences on DSK as DIFFIL.

_+R SRCCOM
XDIFFIL<FIRST»SECOND

Compare the source files FIRST and SECOND on DSK, and output the
differences to DIFFIL on DSK.

_R SRCCOM
KLFT:<DTALFILEL,FTR?

Compare source file FILE 1 on DTAl and one from the high-speed paper
tape reader, and output the differences to the line printer.

26.3 SRCCOM OUTPUT

The first line of output printed by SRCCOM is "SRCCOM Vx", where x
is the current version number, then two header lines followed by as
many difference groups as necessary. The header lines are printed
as follows:

file 1) header line of file 1
file 2) header line of file 2

SRCCOM

A difference group has the form:

1) nnn line 1, file 1
1) line 2, file 1
1) line 3, file 1
1) line n, file 1
**;*

2) nnn line 1, file 2
2) line 2, file 2
2) line m, file 2

where nnn is the number of the page in the PAL listing. Lines 1
through n-1 of file 1 and 1 through m~1 of file 2 did not agree.
SRCCOM compares areas of the two programs, and prints differences
until it finds 3 lines that agree. The last lines printed (line n
of file 1 and line m of file 2) are the first 1lines that agreed.
You can change the number of consecutive 1lines to check for
agreement to any number (k) with the option =k in the command line.

Example:

File 1 File 2 SRCCOM OUTPUT

file 1) A
file 2) A
1)
1)

UHIZOMmEWD O WY
QN QmUOU N XP

*

*

*

*

Occasionally, a decimal number appears following the close
parenthesis after the file number. This decimal number indicates
the source page in this file from which this line and all following
lines (until the next such number) come.

If the two files are identical, SRCCOM prints the message:

NO DIFFERENCES

in the output file.

26-3

SRCCOM

26.4 ERROR MESSAGES
SRCCOM error messages are of the form:

?n

where n is a single digit. The meaning of the various digits are:

20 Insufficient core; this means that the
between the files are too 1large
effective comparison. Use of the /X
alleviate this problem.

21 Input error on file 1 or less than 2
specified.

?2 Input error on file 2.

?3 Output file too large for output device.

?4 Output error.

?5 Could not create output file

26-4

differences

APPENDIX A

CHARACTER CODES

Table A-1

ASCII* Character Set

Decimal Decimal
8-Bit | 6-Bit | Equivalent 8-Bit | 6-Bit | Equivalent
Character | Octal | octal| (Al Format) Character Octal | octal] (Al Pormat)
A 301 01 96 ! 241 41 -1952
B 302 02 160 " 242 42 -1888
Cc 303 03 224 ; 243 43 -1824
D 304 04 288 S 244 44 -1760
E 305 05 352 % 245 45 -1696
F 306 06 416 & 246 46 -1632
G 307 07 480 ' 247 47 -1568
H 310 10 544 (250 50 ~-1504
I 311 11 608) 251 51 -1440
J 312 12 672 * 252 52 -1376
K 313 13 736 + 253 53 -1312
L 314 14 800 ' 254 54 -1248
M 315 15 864 - 255 55 -1184
N 316 16 928 . 256 56 -1120
) 317 17 992 / 257 57 -1056
P 320 20 1056 : 272 72 =352
Q 321 21 1120 ; 273 73 -288
R 322 22 1184 < 274 74 -224
s 323 23 1248 = 275 75 -160
T 324 24 1312 > 276 76 -96
U 325 25 1376 ? 277 77 -32
\'4 326 26 1440 Q 300 32
w 327 27 1504 [333 33 1760
X 330 30 1568 \ 334 34 1824
Y 331 31 1632] 335 35 1888
2 332 32 1696 T(T) % 336 36 1952
0 260 60 -992 K= (=) ** 337 37 2016
1 261 61 -928 Leader/Trailer 200
2 262 62 -864 LINE FEED 212
3 263 63 -800 Carriage RETURN 215
4 264 64 -736 SPACE 240 40 -2016
5 265 65 -672 RUBOUT 377
6 266 66 -608 Blank 000
7 267 67 -544 BELL 207
8 270 70 -480 TAB 211
9 271 71 -416 FORM 214
* An abbreviation for American Standard C(ode for Information
Interchange.

* %

The character in parentheses is printed on some Teletypes.

APPENDIX B

LOADING PROCEDURES

B.l INITIALIZING THE SYSTEM
Before using the computer system, it is good practice to initialize
all units. To initialize the system, make sure that all switches and
controls are as specified below.
1. Main power cord is properly plugged in.
2. Terminal is turned OFF.
3. Low-speed pﬁnch is OFF.
4, Low-speed reader is set to FREE.
5. Computer POWER key is ON.
6. PANEL LOCK is unlocked.
7. Console switches are set to 0.
8. SING STEP is not set,
9. High-speed punch is OFF.
10. DECtape REMOTE lamps are OFF.

The system is now initialized and ready for your use.

B.2 LOADERS
READ-IN MODE (RIM) LOADER

When you receive a computer in the PDP-8 series, it 1is nothing more
than a piece of hardware; its core memory is completely demagnetized.
The computer "knows" absolutely nothing, not even how to receive
input. However, you can manually load data directly into core using
the console switches.

LOADING PROCEDURES

The RIM Loader is the first program you load into the computer, and
you load it using the console switches. The RIM Loader instructs the
computer to receive and store, in core, data punched on paper tape in
RIM-coded format. You use the RIM Loader to load the BIN Loader
described below.

There are two RIM loader programs: you use one when you want to input
from the low-speed paper tape reader, and the other when you want to
input from the high-speed paper tape reader, The 1locations and
corresponding instructions for the low-speed reader are listed in
Table B-1. Information for the high-speed reader is listed in Table
B-2.

For each step in the table, place each of the PDP-8/E console SWITCH
REGISTER switches numbered 0 to 11 either in the up position if the
corresponding table entry is 1, or in the down position if the
corresponding table entry is 0. When all 12 switches have been set to
correspond to a line in the table, follow the instructions in the
right-hand column and proceed to the next line. The tables also
include octal values of the binary switch settings for the benefit of
users familiar with octal numbers.

Table B-1
RIM Loader for Low-Speed Reader
Step Octal Switch Register And Then
Values Setting
012 345 678 91011

1 0000 000 000 000 000 press EXTD ADDR LOAD
2 7756 111 111 101 110 press ADDR LOAD
3 6032 110 000 011 o010 lift DEP key

4 6031 110 000 011 o001 lift DEP key

5 5357 101 011 101 111 lift DEP key

6 6036 110 000 011 110 lift DEP key

7 7106 111 001 000 110 lift DEP key

8 7006 111 000 000 110 lift DEP key

9 7510 111 101 001 000 lift DEP key
10 5357 101 011 101 111 lift DEP key
11 7006 111 000 000 110 1lift DEP key
12 6031 110 000 011 001 lift DEP key
13 5367 101 011 110 111 lift DEP key
14 6034 110 000 011 100 lift DEP key
15 7420 111 100 010 000 1lift DEP key
16 3776 011 111 111 110 lift DEP key
17 3376 011 011 111 110 lift DEP key
18 5356 101 011 101 110 lift DEP key

LOADING PROCEDURES

Table B-2
RIM Loader for High-Speed Reader
Step Octal Switch Register And Then
Values Setting
012 345 678 91011

1 0000 000 000 000 o000 press EXTD ADDR LOAD
2 7756 111 111 101 110 press ADDR LOAD
3 6014 110 000 001 100 lift DEP key

4 6011 110 000 001 o001 lift DEP key

5 5357 101 011 101 111 lift DEP key

? 6016 110 000 o001 11lv lift DEP key

7106 111 001 o000 110 lift DEP key

8 7006 111 000 o000 110 lift DEP key

9 7510 111 101 001 o000 lift DEP key
10 5374 101 011 111 100 l1ifc DEP key
11 7006 111 000 000 110 lift DEP key
12 6011 110 000 001 o001 1ift DEP key
13 5367 101 011 110 111 lift DEP key
14 6016 110 000 001 110 1ift DEP key
15 7420 111 100 010 000 lift DEP key
16 3776 011 111 111 110 lift DEP key
17 3376 011 011 111 110 lift DEP key
18 5357 101 o011 101 111 1ift DEP key

After you have loaded RIM, it is good programming practice to verify
that all instructions were stored properly. You can do this by
performing the steps illustrated in Figure B-2, which also shows how
to correct an incorrectly stored instruction.

wWhen loaded, the RIM Loader occupies absolute locations 7756 through
7776.

LOADING PROCEDURES

‘ INITIALIZE ’

SET ROTARY
SELECTOR SWITCH
TOMD

!

SET SWITCHES 6-8
TO DESIRED
INSTRUCTION FIELD*

\

*DECTAPE USERS SHOULD SET SWITCHES 9—-11
LOAD RIM INTO FIELD 0 TO DESIRED
DATA FIELD*

\

PRESS
EXT LOAD ADDR

SET SR = 7756

PRESS
ADDR LOAD

SET SR =
FIRST INSTRUCTION

PRESS DEP

/

SET SR =
NEXT INSTRUCTION

\

PRESS DEP

ALL
INSTRUCTIONS
IN
?

RIM IS LOADED

Figure B-1 Loading the RIM Loader

LOADIRG PROCEDURES

‘ INITIALIZE ’

)

SET ROTARY
INDICATOR
SWITCH TOMD

SET SWITCHES 6-8
TO FIELD IN
WHICH RIM HAS
BEEN LOADED

PRESS
EXT ADDR LOAD

SET SR =7756
i
PRESS
ADDR LOAD
y
PRESS EXAM -
MD=
NO CORRECT YES
INSTRUCTION
?
Y
SET SR = MA—-1 ALL
INSTRUCTIONS
\ CHECKED
?
PRESS
ADDR LOAD
RIM IS LOADED

y

SET SR = CORRECT
INSTRUCTION

Y
PRESS DEP

Figure B-2 Checking the RIM Loader

LOADING PROCEDURES

B.2.1 Binary (BIN) Loader

The BIN Loader 1is a short utility program that, when in core,
instructs the computer to read binary-coded data punched on paper tape
and store it in core memory. Use BIN primarily to load the programs

furnished in the software package (excluding the loaders and certain
subroutines) and your binary tapes.

BIN is furnished to you on punched paper tape 1in RIM-coded format.
Therefore, RIM must be in core before BIN can be loaded. Figure B-3
illustrates the steps necessary to properly load BIN. Note that when

you load BIN, you should use the same input device (low- or high-speed
reader) as when you loaded RIM.

LOADING PROCEDURES

O———Comom)

SET ROTARY
SELECTOR SWITCH
TOMO

b

SET SWITCHES 6-8
TO FIELDWIIICH
CONTAINS RIM

!

SET SWITCHFS 911
TO FIELD IN WHICH
BIN IS TO BE
LOADED

!

PRESS
EXT ADDR LOAD

HIGH-SPEED READER

LOW-SPEED READER

‘7
rTURN ISR ON]

PUT BIN LOADER
IN HSR

PRESS

TURN TTY TO LINE

PUT BIN LOADER
IN LSR

CLEAR ANDCONT |

i+

TO FIELD BIN WAS

LOADED INTO

SET SWulCiL5 6-8

-{ PUT LSR TO START I

Figure B-3 Loading the BIN Loader

LOADING PROCEDURES

When stored in core, BIN resides on the last page of core, occupying
absolute locations 7625 through 7752 and 7777.

BIN was purposely placed on the last page of core so that it would
always be available for use -- the programs in DEC's software package
do not use the last page of core (excluding the Disk Monitor). You
must be aware that if you write a program that uses the last page of
core, BIN will be wiped out when that program runs on the computer.
When this happens, you must load RIM and then BIN before you can load
another binary tape.

When loading binary tapes, start on the 1leader-trailer code (Code
200), otherwise zeros may be loaded into core, destroying previous
instructions.

Figure B-4 illustrates the procedure for loading binary tapes into
core.

LOADING PROCEDURES

LOAD BIN

SET ROTARY
SELECTOR SWITCH
TO AC

:

SET SWITCHES 6-8
TO FIELD IN WHICH
BIN IS LOADED

!

SET SWITCHLS 4—11

TO FIELD IN WHICH

PROGRAM IS TO BE
LOADEO

!

PRESS:
EXT AOOR LOAD

SETSR = 7777
PRESS ADOR LOAD

HIGH-SPEED READER WHICH LOW-SPEEQ READER

TURN HSR ON

READER
\/
TURN TTY TO LINE
PUT TAPE IN LSR

PUT TAPE IN HSR SET LSR TO START

PRESS
CLEAR AND CONT

PRESS CONT

BEtIN%ING OF
LEANER TRAILER
CUDE

OBJECT TAPE
IS LOADED

Figure B-4 Loading a Binary Tape Using BIN

APPENDIX C

0S/8 DEMONSTRATION RUN

The following pages present a demonstration of the use of the 05/8
system. The terminal output is set off by letters (to the left) that
correspond to the textual explanations on the facing page. This
demonstration illustrates the procedures involved and the use of many
of the 0S/8 system programs and commands.

0S/8 DEMONSTRATION RUN

Use the CCL command to zero the DECtape on Unit 1,
specifying one additional information word in the directory.

You then type the DATE command to set the system date to
April 10, 1974,

Use the ASSIGN command to give DTAl the additional name IN.
All subsequent references to IN refer to DTAL.

DIRECT is called to list the directory of DECtape Unit 1. A
directory listing of DTAl is produced.

Use the Keyboard Monitor GET and SAVE commands to copy EDIT
from the system device to DTAl.

Run the FORTRAN compiler via the CCL command COMPILE to
compile and execute the program TEST1 on the device DSK:.
An output relocatable binary file named TEST1 is saved by
SABR on DECtape Unit 1. The program has an error in it.
Control is returned to the Keyboard Monitor after execution
and the error message printed on the terminal.

Use the program EDIT, located on DTAl, to correct the error
in TESTl1. 1Input the old program, TEST1l, to the Editor, and
the new (corrected) program, TEST2, is written by the Editor
onto DTAl. The first page is yanked into core.

You have noticed a misspelled word in FORMAT 1line 35 and
used the string search feature of the Editor to correct it.
An END statement is appended to the program.

0S/8 DEMONSTRATION RUN

.ZERO DTAl:=1
.DA 4/10/74

.AS DTAl IN

C
.DIR IN:
10-APR-74
730 FREE BLOCKS
.GET SYS EDIT

.SAVE IN EDIT 0-5000;200=2001

.COMPILE IN:TEST2<IN:TEST2
/ CALL EXIT

NO END STATEMENT
.RUN IN EDIT
G *IN:TEST2.FT<TEST1.FT

Y

($/:0055
$#$35 'L
35 FORMAT ('THE AVERATE IS' F20.2/)
$.s
35 FORMAT ('THE AVERAT/GE IS' F20.2/)
H o
$.L
35 FORMAT ('THE AVERAGE IS' F20.2/)
#/L
CALL EXIT
#A
END

0S/8 DEMONSTRATION RUN

You instruct the Editor to list the entire FORTRAN program.

Note the use of implied DO 1loops in the READ and WRITE
statements ...

and device independent I/0. A file named ABCD.DA is opened
on the default device DSK and data is written into it. When
all the data is entered, the file is closed. Later, this
file 1is again opened, and the data is read and used by the
program.

An S in column 1 of a FORTRAN line indicates that the 1line
contains SABR code.

Use CALL EXIT to return control to the Keyboard Monitor
after execution.

After listing the program, the E command to the Editor
closes the file and returns control to the Keyboard Monitor.

\.

15

e XeXe]

K{ 20

r
A
nhnnihnn

(_SMYES,
50
60

w(

N{ tE

0S/8 DEMONSTRATION RUN

THIS PROGRAM PRESENTS A FEW OF THE FEATURES
OF 0S/8 FORTRAN; SPECIFICALLY IT INCLUDES IM-
PLIED DO LOOPS, DIRECT INSERTION OF SABR CODE
AND EXPANDED I/O.

THIS SECTION READS DATA FROM THE TTY AND WRITES
IT ONTO THE DSK AS AN ARRAY.

DIMENSION A(10)

CALL OOPEN ('DSK','ABCD')

WRITE (1,10)

FORMAT ('ENTER 10 NUMBERS IN F6.2 FORMAT.')
WRITE (1,11)

FORMAT ('FOLLOW EACH WITH A CARRIAGE RETURN:'//)
READ (1,15) (A(N), N=1,10)

WRITE (4,15) (A(N), N=1,10)

FORMAT (F6.2)

CALL OCLOSE

THIS SECTION ADDS THE NUMBERS STORED ON THE DSK
AND AVERAGES THEM, PRINTING BOTH RESULTS ON
THE TELETYPE.

SUM=0.0

Do 20 1=1,10

A(I)=0.0

CALL IOPEN ('DSK','ABCD')
READ (4,15) (A(N), N=1,10)
DO 25 N=1,10

SUM=SUM+A (N)

CONTINUE

WRITE (1,30) SUM

FORMAT (/'THE SUM IS' F20.2)
AVR=SUM/10.

WRITE (1,35)AVR

FORMAT ('THE AVERAGE IS' F20.2/)

THE SABR CODE FOLLOWING CHECKS FOR A CARRIAGE
RETURN CHARACTER TO INITIATE REPEATING THE
PROGRAM. ANY OTHER CHARACTER TERMINATES THE
PROGRAM.

WRITE (1,40)
FORMAT ('TO REPEAT, TYPE A CARRIAGE RETURN.'//)
KSF
JMP X
KRB
TAD MYES
SZA
JMP \50
GO TO 5
=215
WRITE (1,60)
FORMAT (/'PROGRAM DONE'//)
CALL EXIT
END

0S/8 DEMONSTRATION RUN

Use the ASSIGN command to change the assigned name of DTAl
from IN to OUT. The FORTRAN compiler is called again, and
the program is loaded. An output relocatable binary file
named TEST2 is saved by SABR on DECtape Unit 1.

The FORTRAN program is executed via the CCL command EXECUTE.
The /G, /I, and /O options cause automatic loading and
execution of the program and the device independent I/O, and
results are calculated and returned. Execution is not
repeated.

Use the DEASSIGN command to delete all device names you have
assigned. The ASSIGN command then gives the name X to DTAl.

The CCL command DIR obtains a directory listing of DECtape
Unit 1. TEST2.RL is the relocatable binary output file from
the FORTRAN compilation.

Next, use the CCL command DIR to print the directory of the
system device on the line printer. ABCD.DA is the FORTRAN
data file created in the preceding program.

The CCL command DEL deletes the unwanted files PROG3 and
PROG4 from the system device. Then the ASCII file TEST2 is
copied from DECtape Unit 1 to the system device with the CCL
command COPY.

0S/8 DEMONSTRATION RUN

o) .AS DTAl ouT
.COMPILE OUT:TEST2<OUT:TEST2

(" .EXECUTE OUT:TEST2/G/1/0

ENTER 10 NUMBERS IN F6.2 FORMAT,
FOLLOW EACH WITH A CARRIAGE RETURN:

16.23

32.00

171.45

2.15

22.10

77.35

2.91

66.00

.46

27.50

THE SUM 1S 418.15
THE AVERAGE IS 41.81

o
A

TO REPEAT, TYPE A CARRIAGE RETURN.

(_ PROGRAM DONE

.DEA
Q
.AS DTAl X
(" .DIR X:
10-APR-74
R < EDIT .SV 12 10-APR-~74

TEST2 .FT 4 10-APR-~74
TEST2 .RL 4 10-APR-74

. 710 FREE BLOCKS

0S/8 DEMONSTRATION RUN

(.DIR LPT:<SYS:
10-APR-74

ABSLDR.SV 5 15-JAN-74
CCL .SV 17 26-FEB-74
DIRECT.SV 7 18-JAN-74
FOTP .SV 8 18-JAN-74
PIP .SV 11 18-JAN-74
LIB8 .RL 29 18-JAN-74
EDIT .SV 10 18-JAN-74
PAL8 .SV 16 18-JAN-74
CREF .SV 13 18-JAN-74
BITMAP.SV 5 18-JAN-74
FORT .SV 25 18-JAN-74
SABR .SV 24 18-JAN-74
LOADER.SV 12 18-JAN-74
SRCCOM.SV 5 18-JAN-74
BOOT .SV 5 18-JAN-74
BUILD .SV 33 18-JAN-74
EPIC .SV 14 18-JAN-74
PIP10 .SV 17 18-JAN-74
RESORC.SV 10 18-JAN-74
DTFRMT.SV 7 18-JAN-74
TDFRMT.SV 9 18-JAN-74
RKSFMT.SV 9 18-JAN-74
RKEFMT.SV 6 18-JAN-74
CAMP .SV 8 18-JAN-74
MCPIP .SV 13 18-JAN-74
DTCOPY.SV 5 18-JAN-74
TDCOPY.SV 7 18-JAN-74
LIBSET.SV 5 18-JAN-74
CCL .PA 130 26-FEB-74
TEST1 .BK 4 11-APR-74
TEST1 .RL 4

TEST1 .FT 4 10-APR-74
TEST2 .RL 4 10-APR-74
ABCD .DA 1 10-APR-74
PROG3 . 1 10-APR-74
PROG4 . 1 10-APR-74
2295 FREE BLOCKS

.DEL PROG3,PROG4

FILES DELETED:

PROG3.
PROG4.

.COPY SYS:TEST2.FT<X:TEST2.FT

APPENDIX D

0S/8 FILE NAME EXTENSIONS

This appendix lists the file name extensions used in 0S/8.

Extension

.BA

.BI

.BK
.BN
.DA
.DC

.DI

.FT

.HL

.LD

.LS

.MP

.PA

Meaning
BASIC source file (default extension for a BASIC input
file)
Batch input file

Backup ASCII file (default extension for a TECO output
file)

Absolute binary file (default extension for ABSLDR, BUILD,
and BITMAP input files; also used as default extension
for PAL8 binary output file)

Data file

Documentation file

Directory listing

FORTRAN language source file (default extension for FORT
input files)

Help file (default extension for HELP input files)

F4 load mode (default assumed by run-time system, F4
loader)

Assembly listing output file (default extension for PALS
and SABR)

Macro source file
File containing a loading map (used by the Linking Loader)

PAL8 source file

RALF assembly language file

Extension

-RB

-.RL

.SB

.SV

.SY

.TE

.T™M

.TX

0S/8 FILE NAME EXTENSIONS

Meaning

Relocatable binary source file

Relocatable binary file (default extension for a Linking
Loader input file; also used as the default extension for
an 8K SABR output file)

8K SABR source file

Core image file or SAVE file; appended to a file name by
the R, RUN, SAVE, and GET Keyboard Monitor commands

System head
TECO macro file (default extension for a MUNG input file)

Temporary file generated by FORTRAN or SABR for system use
(default extension for CREF input files and PAL8 output
files)

Text files

APPENDIX E

0S/8 DEVICE HANDLERS

Most of the the device handlers supplied with the 0S/8 system have
simple operating characteristics that require no action from you.
Some device handlers perform additional operations when you are
performing I/0 on a given device. This appendix gives a brief
description of the 0S/8 device handlers. See the 0S/8 Software
Support Manual (DEC-S8-0SSMB-A-D) for more detailed information
concerning device handlers.

E.1 HIGH-SPEED READER/PUNCH

The device handler for the high-speed paper tape reader, before
reading a tape, prints an uparrow (~) and waits for the user to type
any single character at the keyboard. This gives you time to check
the reader to ensure that the tape 1is 1loaded correctly, and it
facilitates reading multiple tapes (e.g., a PAL8 source tape must be
loaded three times for the three passes of the assembler). Characters
are read from the paper tape and packed into an input buffer. The end
of the paper tape or a full input buffer causes the buffer to be free
for your program. Typing CTRL/C while the tape 1is moving causes a
return to the Keyboard Monitor.

The handler for the high-speed paper tape punch unpacks characters
from the output buffer and punches then on paper tape. Typing CTRL/C
causes a return to the Keyboard Monitor. You must manually turn on
the punch before trying to output to that device.

E.2 LOW-SPEED READER/PUNCH

In addition to the handler for the high-speed reader/punch, a similar
handler 1is available for the ASR-33 Teletype low-speed reader/punch.
If you do not have high-speed 1I/0, you can still read and punch binary
format tapes by using this handler. (The standard TTY handler cannot
be used for binary format tapes, because the binary format can appear
as control characters to the handler.) The operation of this handler
is exactly the same as that for the high-speed reader/punch except
that the uparrow is not printed.

E.3 TTY HANDLERS

There are two TTY (console terminal) handlers available: a one-page
handler and a two-page handler. Both handlers perform I1/0 transfers
between the terminal keyboard and an input buffer, or between an
output buffer and the terminal.

0S/8 DEVICE HANDLERS

The one-page handler echoes all terminal input and performs a line
feed operation after any typed carriage return. A CTRL/O typed while
output is being printed terminates printing of the current output
buffer. A CTRL/C typed at any time during input or output causes a
return to the Keyboard Monitor. Typing CTRL/Z as input terminates
input and gives an end-of-file indication to the calling program. You
should not use the TTY handler to read binary tapes from the low-speed
reader.

You may use the two-page TTY handler only to read or write ASCII
files; results are unpredictable with non-ASCII files. In addition
to the features included in the one-page handler, this handler has the
ability to delete the previous character, through the RUBOUT key, and
to echo it either as a backslash (\) or as the character rubbed out.
Other features have the ability to delete the current line, through
CTRL/U, and to output the correct number of spaces to bring the text
to the start of the next tab stop (through the TAB key).

The two-page TTY handler also includes approximately 30 free locations
so that you may conditionalize certain nonstandard features. See the
0S/8 Software Support Manual for a complete list of these features.

E.4 LINE PRINTERS

The 0S/8 line printer handler is a one-page handler for the LP0S,
LS8E, and LV8 1line printers. The handler performs a form feed
operation before beginning an output task. The characters are
unpacked from the output buffer and printed. A form feed is also
produced following the completion of an output task. Typing CTRL/C
while the line printer is in operation causes a return to the Keyboard
Monitor. A CTRL/Z found in the output buffer causes printing to
terminate and a form feed to be produced. Tabs and line overflow are
handled; nulls are ignored.

Relative location 0 of this handler specifies the width of the 1line
printer. You may patch this 1location using the ALTER command in
BUILD. Set the location to the one's complement of the width desired.
Initially, set this location to 7573 (octal), which corresponds to a
132-column printer. For example, to indicate an 80-column printer,
set location 0 to 7657 (octal).

E.5 VR12 SCOPE

The VR12 scope handler for 0S8/8 (running on a PDP-12) displays
characters on the VR12 scope on both channels. When the scope is
full, the handler stops reading characters from the buffer and
displays what is known as a scope page. The screen is considered full
whenever the end of the buffer is reached, a CTRL/Z is encountered in
text, or when the number of 1lines displayed become equal to the
maximum number you specify. You can advance to the next scope page by
typing any character other than CTRL/C.

When you type CTRL/C, control returns to the Keyboard Monitor.
Control does not return to the calling program until a character is
typed at a point when the handler is displaying the last scope page of
a particular buffer load.

0S/8 DEVICE HANDLERS

To use the VR12 handler, set the number of lines desired in a single
scope page via the switch register (right switches). Set the switch
register to the negative of the number of lines to be displayed in a
scope page. When text reaches the right margin of the scope face, it
is continued on the next physical line of the scope.

A line feed or form feed character causes succeeding text to continue
on the next physical line. Carriage return characters have no effect
on the display.

E.6 CARD READER

The device handler for the card reader reads cards in alphanumeric
format from either a punched card reader or an optical mark card
reader. Card format can have up to 80 characters per card; trailing
blanks are deleted from each card. Blank cards cause a carriage
return/line feed to be entered into the data stream. Typing CTRL/C
while cards are being read terminates reading and returns control to
the Keyboard Monitor. Typing CTRL/Z terminates further reading and
performs as though an end-of-file card was read. (An end-of-file card
contains an arrow character in column 1 (0-8-5 punch) with the
remaining columns blank. Either CTRL/Z or the end-of-file card is
necessary to terminate reading.) It is not possible 'to RUN or GET a
program from the card reader because these commands assume a directory
device.

E.7 DECTAPES

You may interrupt any DECtape other than the system device (if the
system is a DECtape system) with a CTRL/C, returning control to the
Keyboard Monitor. You must never WRITE LOCK DECtape unit 0 on a
DECtape system while it is operating 0S/8.

E.8 MAGNETIC TAPE

The handler for magnetic tape reads and writes either 7- or 9-channel
magnetic tape with odd parity at 800 bpi. This handler is non-file
structured, but you may alter it to read and write files. CTRL/C
returns control to the Keyboard Monitor, but its use is not
recommended since it leaves the tape without an end-of-file indicator.

E.9 CASSETTES

The cassette handler performs character I/0 transfer between the
cassettes and the buffer. It treats cassettes as non-file structured
devices. Data appears on cassette in 192-byte records. Typing CTRL/C
returns control to the Keyboard Monitor.

0S/8 DEVICE HANDLERS

7/
E.10 BATCH HANDLER

The 0S/8 batch handler is used from a BATCH job to read from the BATCH
stream. This is a one-page handler for read-only, non-file structured
devices. If you use this handler when BATCH is not running, it
generates a fatal error. The BATCH handler reads characters from the
BATCH stream, ignoring line feeds, and creating a line feed after a
carriage return. When the handler encounters a line beginning with a
dollar sign, it pads the buffer with CTRL/Z and nulls, and takes the
end-of-file return.

E.11 DSK AND SYS

The DSK and SYS device handlers work automatically without any user
intervention.

OBTA

When you receive new
with the software,
program in question.
that you can obtain
or to the called pro
number at the beg
shows how to obtain

Program

ABSLDR

BASIC

BATCH

BITMAP

BOOT

BUILD

CAMP

CCL

Command Decoder
CREF

DIRECT

EDIT

EPIC

F4 Compiler

F4 Loader (LOAD)
FLAP

POTP

FRTS

Keyboard Monitor
MCPIP

oDT

PALS

PIP

PIP10

RALF

RESORC

SRCCOM

TECO

APPENDIX F

INING 0S/8 PROGRAM VERSION NUMBERS

0S/8 software or when you wish to report problems
you must know the version number of the 0S/8
Most 0S/8 system programs have version numbers
by typing a command to the 0S/8 Command Decoder *
gram. Some system programs print the version
inning of the output listing. The following table
version numbers for most 0S/8 system programs.

How to Obtain Version Number

Internal only.

Printed in program heading.

Type /V in BATCH command string.
Printed at top of output listing.

Type VE to the / printed by BOOT.

Type VE to the $ printed by BUILD.
Type VE to the # printed by CAMP.

Type VER to the Keyboard Monitor.
Internal only.

Printed at end of CREF output listing.
Type /W to the * printed by DIRECT.
Type # to the # printed by EDIT.
Internal only.

Printed in heading of output listing.
Printed in heading of loading map.
Printed in heading of output listing.
Type /W to the * printed by FOTP.

Type /V to the * printed by FRTS
implemented later).

Type VER to the Keyboard Monitor.

Type /V to the * printed by MCPIP.
Internal only.

Printed in heading of output listing.
Type /V to the * printed by PIP.
Printed in heading of directory listing.
Printed at heading of output listing.
Type /V to the * printed by RESORC.
Printed in heading of output listing.
Type CTRL/V to the * printed by TECO.

(to be

INDEX

Aborting a program,
CTRL/C, 3-10
Angle bracket (<), usage,
command decoder, 1-45, 5-1
Assembly instructions,
BITMAP, 7-3
EPIC, 15-11
SRCCOM, 26-1
ASSIGN command, keyboard
monitor, 3-11
Asterisk (*) usage,
command decoder, 5-1
wild card, 3-7
At sign (@) construction, CCL,
1-56, 3-8

BACKSPACE command, CCL, 3-12
BASIC command, 3-13
BATCH, 6-1
demonstration program, 6-13
error messages, 6-9
input file, 6-2
loading and saving, 6-18
monitor commands, 6-4 to 6-6
output file, 6-2
restrictions, 6-12
running from punched cards,
6-11
run-time options, 6-3
transferring software from
cassette, 6-19
BITMAP utility program, 7-1
assembly instructions, 7-3
error messages, 7-3
hardware/software requirements,
7-1
loading, 7-1
options, 7-2
output, 7-2
BOOT command, CCL, 3-14
BOOT (bootstrap utility program),
8-1
mnemonics, 8-2
Breakpoints, 19-4
BUILD, (system generation
program), 9-1
cassette device handlers, 9-3
commands, 9-7 to 9-19
DECtape device handlers, 9-3
device handler format, 9-21
device handlers, 9-1
editing characters, 9-7
error messages, 9-20
paper tape device handlers,
9-3

CAMP (Cassette and Magnetic
Tape Positioner program),
10-1

commands, 10-1 to 10-4
error messages, 1l0-5

Cassette and Magnetic Tape
Positioner -- see CAMP

Cassette transfer program, 18-1

CCL (Concise Command Language),
3-3

command, 3-15

Character deletion, 3-10

Character search, Symbolic
Editor, 4-12

Character string search,
Symbolic Editor, 4-13 to
4-16

Command Decoder, 5-1

called from BATCH, 6-6
error messages, 5-3
file specifications, 5-1
input string, 5-1
Command mode, Editor, 4-4
Commands,
CCL, 3-4
keyboard, 3-1, 3-11 to 3-67
monitor, 3-1

Command string examples,
Command Decoder, 5-1

Command string format, BATCH,
6-2

Command summary, ODT, 19-8

COMPARE command,

CCL, 3-16
EPIC, 15-8

COMPILE command, CCL, 3-19

COPY command, CCL, 3-22

CREATE command, CCL, 3-23

CREF command, CCL, 3-25

Cross—-Reference Program (CREF),
11-1

error messages, l1l1l-6
options, 1l1l-1

output, 11-3

pseudo-op handling, 11-3
restrictions, 11-5

CTRL/C, 3-10

CTRL/U, 3-10

Current location, ODT, 19-7

DATE command, 3-26

DEASSIGN command, 3-27

DECtape copy and format
programs, 3-1

Index-1

INDEX (Cont.)

DECtape file for BATCH input,
6-1
DECtape systems, BUILD, 9-1

DELETE command, CCL, 3-27
Deletion of characters, 3-10
Demonstration program,
BATCH, 6-13
Descriptor block, BUILD, 9-22
Device codes for paper tape,
EPIC, 5-4
Device Control Block (DCB)
word, BUILD, 9-23
Device entry points, 9-24
Device handlers, 0S5/8, 9-1
Device handlers, RESORC, 22-1
Device names,
assignment of, 3-11
deassignment of, 3-29
permanent, 2-1
Device types, RESORC, 22-1
DIRECT command, 3-30
DIRECT utility program, 12-1
error messages, 12-5
examples, 12-3
options, 12-2
wild card construction, 3-7
Disk file for BATCH input, 6-1
Dollar sign ($),
BATCH usage, 6-4
DOT (.) character,
monitor response, 3-1
DTCOPY, 13-10
DTFRMT, 13-1
DUMP utility program, 14-1
Duplicate command, 3-32

EDIT command, CCL, 3-33
EDIT editing program, 4-1
Editing characters, BUILD, 9-7
Editing commands, EPIC, 15-4
Edit, Punch and Compare (EPIC)
utility program -- see EPIC
Entry point offset, BUILD, 9-24
EQOF command, CCL, 3-34
EPIC (Edit, Punch and Compare)
utility program, 15-1
assembly instructions, 15-11
command format, 15-2
compare commands, 15-8
editing commands, 15-5
error conditions, 15-4
error messages, 15-8
loading, 15-1
loading from paper tape, 15-11
low-speed I/0, 15-4
paper tape format, 15-10
Equal sign (=),
octal number options, 3-5

Error conditions,
EPIC, 15-4
opT, 19-7
Error messages,
BATCH, 6-9
BITMAP, 7-3
BUILD, 9-20
CaMP, 10-5
Command Decoder, 5-3
CREF, 1l1-6
DIRECT, 12-5
Editor, 4-18
EPIC, 15-8
FOTP, 16-11
MCPIP, 18-4
Monitor, 3-1
PIP, 20-8
PIP1l0, 21-3
RESORC, 22-6
SRCCOM, 24-6
EXECUTE command, CCL, 3-35
Extension for BATCH input file,
6-2
Extensions, CCL compiler-
assembler, 3-19
Extensions to file names, key-
board monitor, 2-2

File names, 2-2
File Oriented Trasnfer Program
(FOTP), 1l6-1
error messages, 16-11
input specifications, 16-1
options, 16-7
output specifications, 16-3
File specifications,
Command Decoder, 5-1
File transfers, DECsystem-10,
21-1
FOTP -- see File Oriented
Transfer Program
FUTIL utility program, 17-1

GET command, 3-35

Handlers -- see Device handlers

Header block, BUILD, 9-22

HELP command, CCL, 3-37

Hyphen construction in BUILD,
9-8

Index-2

INDEX (Cont.)

Indirect commands, CCL, 3-8
Indirect references, ODT, 19-1
Input files,
BATCH, 6-2
Editor, 4-1
Input/output,
low speed, with EPIC, 15-4
Input/output specifications,
CCL, 3-1 to 3-10
Command Decoder, 5-1
DIRECT, 12-1
FOTP, 1l6-1 to 16-3
RESORC, 22-1
Input string, Command Decoder,
Inter-buffer character string
search, Editor, 4-16
Intra-buffer character string
search, Editor, 4-13

Keyboard commands, 3-11 to
3-67

LOAD command, CCL, 3-39
Loading,
BATCH, 6-18
BITMAP, 7-1
EPIC, 15-1
EPIC from paper tape, 15-11
SRCCOM, 26-1
Low-speed I/0 with EPIC, 15-4

Magnetic tape file names, 18-4
Magtape/Cassette Peripheral
Interchange Program (MCPIP),
18-1
error messages, 18-4
options, 18-2
MAP command, CCL, 3-41
MCPIP -- see Magtape/Cassette
Peripheral Interchange
Program
Memory command, 3-41
Mnemonics for devices, BOOT,
8-2
MUNG command, CCL, 3-44

Octal Debugging Technique (ODT),
19-1
commands, 19-2
errors, 19-7
special characters, 19-2
techniques, 19-4

ODT -- see Octal Debugging
Technique
ODT command, keyboard monitor,
3-45
Options, 3-4 to 3-6
output,
BITMAP, 7-2
CREF, 11-1
SRCCOM, 26-2
Output files,
BATCH, 6-2
Editor, 4-6
Qutput specifications,
DIRECT, 12-2
FOTP, 16-1
RESORC, 22-1

Paper tape system loading, 1-20
Period (.) character -- see DOT
(.) character
Peripheral Interchange Program,
(pIP), 20-1
error messages, 20-8
examples of specification
commands, 20-6
options, 20-1
Permanent device names, 2-1

PIP -- see Peripheral Interchange

Program
PIP10 utility program, 21-1
error messages, 21-3
options, 21-2
Postdeletion, FOTP, 16-7
Predeletion, FOTP, 1l6-7
PRINT command, 3-47
Pseudo-op handling, CREF, 11-3
Punch and Compare program —-—
see EPIC
PUNCH command, CCL, 3-48
Punched cards, 6-11

Question mark,
wild character, 3-7

RENAME command, CCL, 3-50
RES command, CCL, 3-51
RESORC utility program, 22-1
device types, 22-3
error messages, 22-6
handlers, 22-3
options, 22-2
REWIND command, CCL, 3-52

RKLFMT disk formatter program,
23-1

Index-3

INDEX (Cont.)

RUN command, keyboard monitor,
3-53
RXCOPY utility program, 24-1

SET utility program, 25-1

Single character search,
Editor, 4-12

SKIP command, 3-57

Source Compare Utility Program °

(SRCCOM) , 26-1
error messages, 26-4
loading, 26-1
options, 26-2
output, 26-2
Spool device files, BATCH,
6-2

Square brackets ({[]) characters,

Command Decoder, 3-5
SQUISH command, CCL, 3-59
SRCCOM -- see Source Compare

Utility program
START command, keyboard

monitor, 3-58
Stopping execution,

CTRL/C, 3-10
SUBMIT command, CCL, 3-60

System conventions, keyboard
monitor, 7-1
System devices, 2-1

TDCOPY, 13-10
TDFRMT, 13-5
Terminate command, 3-62
Text mode, Editor, 4-3
TYPE command, CCL, 3-63

UA, UB, UC commands, CCL, 3-63
UNLOAD command, CCL, 3-65

VERSION command, 3-66

Wild card construction, 3-7

ZERO command, CCL, 3-67

Index-4

Please cut along this line.

0s/8

System Reference
Manual
AA-H607A-TA

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

oooaaao

Other (please specify)

Name Date

Organization

Street

City. State Zip Code
or
Country

FOLD HERE

DO NOT TEAR — FOLD HERE AND STAPLE

‘ “ “ ‘ NO POSTAGE
) t NECESSARY

IF MAILED IN THE
UNITED STATES

BUSINES REPLY /ML

FIRST CLASS PERMIT NO. 33 MAYNARD, MA
POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
SOFTWARE DOCUMENTATION

146 MAIN STREET — ML5-5/E39
MAYNARD, MASSACHUSETTS 01754

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	02-01
	02-02
	02-03
	02-04
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	03-47
	03-48
	03-49
	03-50
	03-51
	03-52
	03-53
	03-54
	03-55
	03-56
	03-57
	03-58
	03-59
	03-60
	03-61
	03-62
	03-63
	03-64
	03-65
	03-66
	03-67
	03-68
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	05-01
	05-02
	05-03
	05-04
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	07-01
	07-02
	07-03
	07-04
	08-01
	08-02
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	14-01
	14-02
	14-03
	14-04
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-10
	17-11
	17-12
	17-13
	17-14
	17-15
	17-16
	17-17
	17-18
	17-19
	17-20
	17-21
	17-22
	17-23
	17-24
	17-25
	17-26
	17-27
	17-28
	17-29
	17-30
	17-31
	17-32
	17-33
	17-34
	17-35
	17-36
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	19-08
	19-09
	19-10
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	20-09
	20-10
	21-01
	21-02
	21-03
	21-04
	22-01
	22-02
	22-03
	22-04
	22-05
	22-06
	23-01
	23-02
	23-03
	23-04
	23-05
	23-06
	24-01
	24-02
	25-01
	25-02
	25-03
	25-04
	25-05
	25-06
	25-07
	25-08
	25-09
	25-10
	25-11
	25-12
	25-13
	25-14
	26-01
	26-02
	26-03
	26-04
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	F-01
	F-02
	Index-01
	Index-02
	Index-03
	Index-04
	replyA
	replyB

