trennfix/sw: Nice, keep! Good!
[eisenbahn.git] / trennfix / sw / mm / src / mm_switch.c
1 /******************************************************************************
2 *
3 * Trennfix firmware - mm_switch.c
4 *
5 * Maerklin Motorola switch command receiver
6 *
7 * Copyright (C) 2017 Philipp Hachtmann
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 *
22 *****************************************************************************/
23
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <string.h>
27
28 #include <avr/io.h>
29 #include <avr/eeprom.h>
30 #include <avr/interrupt.h>
31 #include <avr/pgmspace.h>
32
33 #include <util/delay.h>
34 #include <stdint.h>
35
36 #include <config/hardware.h>
37 #include <mm/mm_switch.h>
38
39 /*
40 * Private data types
41 */
42
43
44 /*
45 *
46 * Check for stuff we need
47 *
48 */
49 #if !defined(MM_TSTART) || !defined(MM_SENSE) || !defined(MM_TIMER_INT_VECT)
50
51 #error Missing needed MM_... macro!
52
53 #endif
54
55 /*
56 * Private global variables
57 */
58
59 #ifndef MM_USE_REGISTER_VARS
60
61 static volatile uint8_t bitno = 0;
62 static uint8_t shift_command;
63 static uint8_t shift_function;
64 static uint8_t shift_address;
65 static enum mm_recstate recstate = MM_IDLE;
66
67 #endif
68
69 /*
70 * Lookup trinary nibble
71 *
72 * This was implemented using a switch statement before.
73 * Changing the lookup to a table did only add two bytes
74 * of memory and saved ca. 50 bytes program memory.
75 */
76 static const uint8_t nibble_table[16]={
77 [0x0] = 0,
78 [0xc] = 1,
79 [0x8] = 2,
80 [0x3] = 3,
81 [0xf] = 4,
82 [0xb] = 5,
83 [0x2] = 6,
84 [0xe] = 7,
85 [0xa] = 8
86 };
87 #define lookup_nibble(nibble) nibble_table[nibble & 0xf]
88
89 static uint8_t lookup_decoder(uint8_t mm_byte)
90 {
91 uint8_t low;
92 uint8_t high;
93 if (mm_byte == 0)
94 return 80;
95 low = lookup_nibble(mm_byte >> 4);
96 high = lookup_nibble(mm_byte & 0xf);
97 if (!low)
98 return 0;
99 return 9 * high + low;
100 }
101
102 static uint8_t lookup_command(uint8_t mm_command)
103 {
104 uint8_t res;
105 /*
106 * Check for aabbccdd condition
107 *
108 * a a b b c c d d mm_command
109 * XOR a b b c c d d 0 mm_command << 1
110 * Mask 1 0 1 0 1 0 1 0 0xaa
111 *
112 * Must be zero!
113 *
114 */
115
116 if ((mm_command ^ (mm_command << 1)) & 0xaa)
117 return 0;
118 /*
119 * Protocol differences:
120 * =====================
121 *
122 * I have an old "central control" 6022 and a "control unit" 6021
123 * for measurements and test. It is assumed that the 6022 outputs
124 * old MM1 format while the 6021 definitively outputs MM2 telegrams.
125 *
126 * In MM1, switch commands are different from MM2 with respect what
127 * happens if you release a button.
128 *
129 * When you press a button, both protocols send
130 *
131 * <aaaaaaaa><00><aabbcc11>
132 *
133 * where a = 1, b = 2, c = 4 and the keys are numerated from 0 to 7
134 * in the order 1 red, 1 green, 2 red, 2 green and so on.
135 *
136 * The last two bits correspond to "on" state of the button/coil.
137 *
138 * When a key is released under MM1 protocol, the sequence sent is
139 * analogue to the button down sequence:
140 *
141 * <aaaaaaaa><00><aabbcc00> where abc again represents the button's
142 * address and the last bits now signal "off".
143 *
144 * MM2 handles this differently:
145 * Whenever any key from the addressed decoder is released, the sequence
146 * <aaaaaaaa>00<00000000> is sent - not only for key 0, but for all
147 * keys!
148 *
149 * While MM1 presents the theoretical possibility to press several keys
150 * independently and simultaneously (which my keyboard does NOT
151 * support), MM2 supports only one key at a time (besides strange
152 * sequences like "one down, another down, all up"...
153 *
154 * A decoder that strictly adheres to the MM1 standard would not work
155 * properly with MM2 control units. As far as I know all K83/K84
156 * decoders always worked with MM2 control units. That means that
157 * they reduce the commands to the possibilities of MM2 from the
158 * beginning.
159 *
160 * Possible use cases for the old protocol button release commands:
161 * - Determine if the protocol is MM1 or MM2
162 * - Implement hidden evil features into the controller which can
163 * only be summoned by old MM1 gear or selfmade control telegram
164 * generators.
165 *
166 * What this code now actually does:
167 * =================================
168 *
169 * When key pressed (aabbcc11), it will send out the key number in the
170 * range 1-8 and 0 if it gets any key up command and therefore ignore
171 * the key number if it is transmitted with the key up command.
172 *
173 */
174 if (!(mm_command & 0x01))
175 res = 0;
176 else
177 res = (mm_command & 0x80) * 1 + (mm_command & 0x20) * 0x02
178 + (mm_command & 0x08) * 0x04 + 1;
179 return res;
180 }
181
182
183 /* We will shift from right to left.
184 * XXXXXXXX XX XXXXXXXX
185 * shift_address shift_function shift_command
186 *
187 * The bits 7 downto 2 of shift_function are ignored.
188 */
189 #define SAVE_ANOTHER_40_BYTES
190 #ifdef SAVE_ANOTHER_40_BYTES
191
192 void shift(uint8_t value)
193 {
194 asm("ror %[val] ; Shift value right into carry\n\t"
195 "rol %[cmd] ; and shift to command reg\n\t"
196 "mov __tmp_reg__, %[func] ; save function value \n\t"
197 "rol %[func] ; Shift up function value\n\t"
198 "ror __tmp_reg__ ; shift bit 1\n\t"
199 "ror __tmp_reg__ ; down to carry\n\t"
200 "rol %[addr] ; And we're at the address\n\t"
201 : [cmd] "=r" (shift_command), [func] "=r" (shift_function),
202 [addr] "=r" (shift_address)
203 : "0" (shift_command), "1" (shift_function),
204 "2" (shift_address), [val] "r" (value)
205 );
206 }
207
208 #else /* This is what we do to shift */
209
210 void shift(uint8_t value)
211 {
212 shift_address <<= 1;
213 if (shift_function & 2)
214 shift_address |= 1;
215 shift_function <<= 1;
216 if (shift_command & 0x80)
217 shift_function |= 1;
218 shift_command <<= 1;
219 if (value)
220 shift_command |= 1;
221 }
222 #endif
223
224 static volatile uint8_t mm_rec_tolerated_timeouts;
225
226
227 ISR(MM_TIMER_INT_VECT) {
228
229 static volatile uint8_t shift_command_first;
230 static volatile uint8_t shift_function_first;
231 static volatile uint8_t shift_address_first;
232 uint8_t address;
233 uint8_t command;
234
235 #ifdef MM_FILTER_REPEATED
236 static uint8_t address_last = 0xff;
237 static uint8_t function_last = 0xff;
238 static uint8_t command_last = 0xff;
239 #endif
240
241 MM_TSTART;
242
243 switch(recstate) {
244 case MM_FIRST_FAST_SAMPLE:
245 recstate = MM_FIRST_SLOW_SAMPLE;
246 break;
247
248 case MM_FIRST_SLOW_SAMPLE:
249 bitno = 0;
250
251 case MM_SLOW_SAMPLE:
252 recstate = MM_SLOW_WAIT_FOR_CLOCK_DELAY;
253 break;
254
255 case MM_FAST_SAMPLE:
256 recstate = MM_FAST_WAIT_FOR_CLOCK;
257 break;
258
259 case MM_FAST_WAIT_FOR_CLOCK: /* A timeout! */
260 if (mm_rec_tolerated_timeouts) {
261 mm_rec_tolerated_timeouts--;
262 } else {
263 recstate = MM_IDLE;
264
265 }
266 return;
267
268 case MM_SLOW_SAMPLE_DELAY:
269 recstate = MM_SLOW_SAMPLE;
270 return;
271
272 case MM_SLOW_WAIT_FOR_CLOCK_DELAY:
273 recstate = MM_SLOW_WAIT_FOR_CLOCK;
274 return;
275
276 case MM_SLOW_WAIT_FOR_CLOCK:
277 if (mm_rec_tolerated_timeouts) {
278 trigger();
279 mm_rec_tolerated_timeouts--;
280 recstate = MM_SLOW_WAIT_FOR_CLOCK_DELAY;
281 return;
282 }
283 default:
284 recstate = MM_IDLE;
285 case MM_IDLE:
286 return;
287 }
288
289 shift(MM_SENSE);
290 bitno++;
291
292 if (bitno == 18) { /* Save first received word */
293 shift_address_first = shift_address;
294 shift_function_first = shift_function;
295 shift_command_first = shift_command;
296 mm_rec_tolerated_timeouts = 18;
297 trigger();
298 }
299
300 if (bitno == 36) {
301 if ((shift_command == shift_command_first) &&
302 (shift_address == shift_address_first) &&
303 (shift_function == shift_function_first)) {
304
305 #ifdef MM_FILTER_REPEATED
306 if ((shift_address != address_last) || (shift_command != command_last) ||
307 shift_function != function_last) {
308 #endif
309 address = lookup_decoder(shift_address);
310
311 if (recstate == MM_SLOW_WAIT_FOR_CLOCK_DELAY) {
312 trigger();
313 mm_switch_drive(address, shift_function, shift_command);
314 } else if (recstate == MM_FAST_WAIT_FOR_CLOCK) {
315 trigger();
316 command = lookup_command(shift_command);
317 mm_switch_command(address, command);
318 }
319 #ifdef MM_FILTER_REPEATED
320 }
321 address_last = shift_address;
322 function_last = shift_function;
323 command_last = shift_command;
324 #endif
325 }
326
327 }
328 }
329
330 //void __attribute((weak)) mm_switch_drive(uint8_t address, uint8_t function, uint8_t command);
331
332 ISR(BADISR_vect)
333 {
334 while(1) {
335 /*
336 setpin(PIN_LED, 1);
337 _delay_ms(30);
338 setpin(PIN_LED, 0);
339 _delay_ms(30);
340 setpin(PIN_LED, 1);
341 _delay_ms(30);
342 setpin(PIN_LED, 0);
343 _delay_ms(2000);
344 */
345 }
346 }
347
348 ISR(TIM0_OVF_vect)
349 {
350 return;
351 while(1) {
352 setpin(PIN_LED, 1);
353 _delay_ms(30);
354 setpin(PIN_LED, 0);
355 _delay_ms(300);
356 }
357
358 }
359
360 /* Pin change interrupt vector */
361 void mm_pinchange_handler(void)
362 {
363 static uint8_t sense_last;
364
365 if (MM_SENSE == sense_last)
366 return;
367 sense_last = MM_SENSE;
368 if (!sense_last)
369 return;
370
371 MM_TSTART;
372
373 switch(recstate) {
374 case MM_IDLE:
375 bitno = 0;
376 recstate = MM_FIRST_FAST_SAMPLE;
377 break;
378
379 case MM_FIRST_SLOW_SAMPLE:
380 recstate = MM_FAST_SAMPLE;
381 break;
382
383 case MM_FAST_WAIT_FOR_CLOCK:
384 recstate = MM_FAST_SAMPLE;
385 mm_rec_tolerated_timeouts = 0;
386 break;
387
388 case MM_SLOW_WAIT_FOR_CLOCK_DELAY: /* If clock comes early */
389 recstate = MM_SLOW_WAIT_FOR_CLOCK;
390 break;
391
392 case MM_SLOW_WAIT_FOR_CLOCK:
393 recstate = MM_SLOW_SAMPLE_DELAY;
394 mm_rec_tolerated_timeouts = 0;
395 break;
396
397 case MM_SLOW_SAMPLE_DELAY:
398 recstate = MM_SLOW_SAMPLE;
399 break;
400 /* Not expected */
401 case MM_FIRST_FAST_SAMPLE:
402 case MM_FAST_SAMPLE:
403 case MM_SLOW_SAMPLE:
404 recstate = MM_IDLE;
405 default:
406 break;
407 }
408 }
409
410 void __attribute__((weak))mm_switch_drive(uint8_t decoder, uint8_t function,
411 uint8_t command)
412 {
413 while(1);
414 }
415
416 void __attribute__((weak))mm_switch_command(uint8_t address, uint8_t command)
417 {
418 }
419
420
421 /******************************************************************************
422 * The end :-)
423 */
424
425
426