ba68a8b92354319fba7eec165bfae9495de962bd
[eisenbahn.git] / trennfix / sw / mm / src / mm_switch.c
1 /******************************************************************************
2 *
3 * Trennfix firmware - mm_switch.c
4 *
5 * Maerklin Motorola switch command receiver
6 *
7 * Copyright (C) 2017 Philipp Hachtmann
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 *
22 *****************************************************************************/
23
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <string.h>
27
28 #include <avr/io.h>
29 #include <avr/eeprom.h>
30 #include <avr/interrupt.h>
31 #include <avr/pgmspace.h>
32
33 #include <util/delay.h>
34 #include <stdint.h>
35
36 #include <config/hardware.h>
37 #include <mm/mm_switch.h>
38
39 /*
40 * Private data types
41 */
42
43
44 /*
45 *
46 * Check for stuff we need
47 *
48 */
49 #if !defined(MM_TSTART_FAST) || !defined(MM_TSTART_SLOW) || !defined(MM_TSTOP) \
50 || !defined(MM_SENSE) || !defined(MM_TIMER_INT_VECT)
51
52 #error Missing timer start macro MM_TSTART_FAST!
53
54 #endif
55
56 /*
57 * Private global variables
58 */
59
60 #ifndef MM_USE_REGISTER_VARS
61
62 static volatile uint8_t bitno = 0;
63 static uint8_t shift_command;
64 static uint8_t shift_function;
65 static uint8_t shift_address;
66 static enum mm_recstate recstate = MM_IDLE;
67
68 #endif
69
70 /*
71 * Lookup trinary nibble
72 *
73 * This was implemented using a switch statement before.
74 * Changing the lookup to a table did only add two bytes
75 * of memory and saved ca. 50 bytes program memory.
76 */
77 static const uint8_t nibble_table[16]={
78 [0x0] = 0,
79 [0xc] = 1,
80 [0x8] = 2,
81 [0x3] = 3,
82 [0xf] = 4,
83 [0xb] = 5,
84 [0x2] = 6,
85 [0xe] = 7,
86 [0xa] = 8
87 };
88 #define lookup_nibble(nibble) nibble_table[nibble & 0xf]
89
90 static uint8_t lookup_decoder(uint8_t mm_byte)
91 {
92 uint8_t low;
93 uint8_t high;
94 if (mm_byte == 0)
95 return 80;
96 low = lookup_nibble(mm_byte >> 4);
97 high = lookup_nibble(mm_byte & 0xf);
98 if (!low)
99 return 0;
100 return 9 * high + low;
101 }
102
103 static uint8_t lookup_command(uint8_t mm_command)
104 {
105 uint8_t res;
106 /*
107 * Check for aabbccdd condition
108 *
109 * a a b b c c d d mm_command
110 * XOR a b b c c d d 0 mm_command << 1
111 * Mask 1 0 1 0 1 0 1 0 0xaa
112 *
113 * Must be zero!
114 *
115 */
116
117 if ((mm_command ^ (mm_command << 1)) & 0xaa)
118 return 0;
119 /*
120 * Protocol differences:
121 * =====================
122 *
123 * I have an old "central control" 6022 and a "control unit" 6021
124 * for measurements and test. It is assumed that the 6022 outputs
125 * old MM1 format while the 6021 definitively outputs MM2 telegrams.
126 *
127 * In MM1, switch commands are different from MM2 with respect what
128 * happens if you release a button.
129 *
130 * When you press a button, both protocols send
131 *
132 * <aaaaaaaa><00><aabbcc11>
133 *
134 * where a = 1, b = 2, c = 4 and the keys are numerated from 0 to 7
135 * in the order 1 red, 1 green, 2 red, 2 green and so on.
136 *
137 * The last two bits correspond to "on" state of the button/coil.
138 *
139 * When a key is released under MM1 protocol, the sequence sent is
140 * analogue to the button down sequence:
141 *
142 * <aaaaaaaa><00><aabbcc00> where abc again represents the button's
143 * address and the last bits now signal "off".
144 *
145 * MM2 handles this differently:
146 * Whenever any key from the addressed decoder is released, the sequence
147 * <aaaaaaaa>00<00000000> is sent - not only for key 0, but for all
148 * keys!
149 *
150 * While MM1 presents the theoretical possibility to press several keys
151 * independently and simultaneously (which my keyboard does NOT
152 * support), MM2 supports only one key at a time (besides strange
153 * sequences like "one down, another down, all up"...
154 *
155 * A decoder that strictly adheres to the MM1 standard would not work
156 * properly with MM2 control units. As far as I know all K83/K84
157 * decoders always worked with MM2 control units. That means that
158 * they reduce the commands to the possibilities of MM2 from the
159 * beginning.
160 *
161 * Possible use cases for the old protocol button release commands:
162 * - Determine if the protocol is MM1 or MM2
163 * - Implement hidden evil features into the controller which can
164 * only be summoned by old MM1 gear or selfmade control telegram
165 * generators.
166 *
167 * What this code now actually does:
168 * =================================
169 *
170 * When key pressed (aabbcc11), it will send out the key number in the
171 * range 1-8 and 0 if it gets any key up command and therefore ignore
172 * the key number if it is transmitted with the key up command.
173 *
174 */
175 if (!(mm_command & 0x01))
176 res = 0;
177 else
178 res = (mm_command & 0x80) * 1 + (mm_command & 0x20) * 0x02
179 + (mm_command & 0x08) * 0x04 + 1;
180 return res;
181 }
182
183
184 /* We will shift from right to left.
185 * XXXXXXXX XX XXXXXXXX
186 * shift_address shift_function shift_command
187 *
188 * The bits 7 downto 2 of shift_function are ignored.
189 */
190 #define SAVE_ANOTHER_40_BYTES
191 #ifdef SAVE_ANOTHER_40_BYTES
192
193 void shift(uint8_t value)
194 {
195 asm("ror %[val] ; Shift value right into carry\n\t"
196 "rol %[cmd] ; and shift to command reg\n\t"
197 "mov __tmp_reg__, %[func] ; save function value \n\t"
198 "rol %[func] ; Shift up function value\n\t"
199 "ror __tmp_reg__ ; shift bit 1\n\t"
200 "ror __tmp_reg__ ; down to carry\n\t"
201 "rol %[addr] ; And we're at the address\n\t"
202 : [cmd] "=r" (shift_command), [func] "=r" (shift_function),
203 [addr] "=r" (shift_address)
204 : "0" (shift_command), "1" (shift_function),
205 "2" (shift_address), [val] "r" (value)
206 );
207 }
208
209 #else /* This is what we do to shift */
210
211 void shift(uint8_t value)
212 {
213 shift_address <<= 1;
214 if (shift_function & 2)
215 shift_address |= 1;
216 shift_function <<= 1;
217 if (shift_command & 0x80)
218 shift_function |= 1;
219 shift_command <<= 1;
220 if (value)
221 shift_command |= 1;
222 }
223 #endif
224
225 static volatile uint8_t mm_rec_tolerated_timeouts;
226
227
228 ISR(MM_TIMER_INT_VECT) {
229
230 static volatile uint8_t shift_command_first;
231 static volatile uint8_t shift_function_first;
232 static volatile uint8_t shift_address_first;
233 uint8_t address;
234 uint8_t command;
235
236 MM_TSTART_FAST;
237
238 #ifdef MM_FILTER_REPEATED
239 static uint8_t address_last = 0xff;
240 static uint8_t function_last = 0xff;
241 static uint8_t command_last = 0xff;
242 #endif
243
244 switch(recstate) {
245
246 case MM_FIRST_FAST_SAMPLE:
247 recstate = MM_FIRST_SLOW_SAMPLE ;
248 break;
249
250 case MM_FIRST_SLOW_SAMPLE:
251 bitno = 0;
252
253 case MM_SLOW_SAMPLE:
254 recstate = MM_SLOW_WAIT_FOR_CLOCK_DELAY;
255 break;
256
257 case MM_FAST_SAMPLE:
258 recstate = MM_FAST_WAIT_FOR_CLOCK;
259 break;
260
261 case MM_FAST_WAIT_FOR_CLOCK: /* A timeout! */
262 if (mm_rec_tolerated_timeouts) {
263 mm_rec_tolerated_timeouts--;
264 } else {
265 recstate = MM_IDLE;
266
267 }
268 return;
269
270 case MM_SLOW_SAMPLE_DELAY:
271 recstate = MM_SLOW_SAMPLE;
272 return;
273
274 case MM_SLOW_WAIT_FOR_CLOCK_DELAY:
275 recstate = MM_SLOW_WAIT_FOR_CLOCK;
276 return;
277
278 case MM_SLOW_WAIT_FOR_CLOCK:
279 if (mm_rec_tolerated_timeouts) {
280 mm_rec_tolerated_timeouts--;
281 recstate = MM_SLOW_WAIT_FOR_CLOCK_DELAY;
282 return;
283 }
284 default:
285 recstate = MM_IDLE;
286 case MM_IDLE:
287 return;
288 }
289
290 shift(MM_SENSE);
291 bitno++;
292
293 if (bitno == 18) { /* Save first received word */
294 shift_address_first = shift_address;
295 shift_function_first = shift_function;
296 shift_command_first = shift_command;
297 mm_rec_tolerated_timeouts = 18;
298 }
299
300 if (bitno == 36) {
301 if ((shift_command == shift_command_first) &&
302 (shift_address == shift_address_first) &&
303 (shift_function == shift_function_first)) {
304
305 #ifdef MM_FILTER_REPEATED
306 if ((shift_address != address_last) || (shift_command != command_last) ||
307 shift_function != function_last) {
308 #endif
309 address = lookup_decoder(shift_address);
310
311 if (recstate == MM_SLOW_WAIT_FOR_CLOCK_DELAY) {
312 trigger();
313 mm_switch_drive(address, shift_function, shift_command);
314 } else if (recstate == MM_FAST_WAIT_FOR_CLOCK) {
315 trigger();
316 command = lookup_command(shift_command);
317 mm_switch_command(address, command);
318 }
319 #ifdef MM_FILTER_REPEATED
320 }
321 address_last = shift_address;
322 function_last = shift_function;
323 command_last = shift_command;
324 #endif
325 }
326
327 }
328 }
329
330 //void __attribute((weak)) mm_switch_drive(uint8_t address, uint8_t function, uint8_t command);
331
332 ISR(BADISR_vect)
333 {
334 while(1) {
335 /*
336 setpin(PIN_LED, 1);
337 _delay_ms(30);
338 setpin(PIN_LED, 0);
339 _delay_ms(30);
340 setpin(PIN_LED, 1);
341 _delay_ms(30);
342 setpin(PIN_LED, 0);
343 _delay_ms(2000);
344 */
345 }
346 }
347
348 ISR(TIM0_OVF_vect)
349 {
350 return;
351 while(1) {
352 setpin(PIN_LED, 1);
353 _delay_ms(30);
354 setpin(PIN_LED, 0);
355 _delay_ms(300);
356 }
357
358 }
359
360 /* Pin change interrupt vector */
361 void mm_pinchange_handler(void)
362 {
363 static uint8_t sense_last;
364
365 if (MM_SENSE == sense_last)
366 return;
367 sense_last = MM_SENSE;
368 if (!sense_last)
369 return;
370
371 MM_TSTART_FAST;
372
373 switch(recstate) {
374 case MM_IDLE:
375 bitno = 0;
376 recstate = MM_FIRST_FAST_SAMPLE;
377 break;
378
379 case MM_FIRST_SLOW_SAMPLE:
380 recstate = MM_FAST_SAMPLE;
381 break;
382
383 case MM_FAST_WAIT_FOR_CLOCK:
384 recstate = MM_FAST_SAMPLE;
385 mm_rec_tolerated_timeouts = 0;
386 break;
387
388 case MM_SLOW_WAIT_FOR_CLOCK_DELAY: /* If clock comes early */
389 recstate = MM_SLOW_WAIT_FOR_CLOCK;
390 break;
391
392 case MM_SLOW_WAIT_FOR_CLOCK:
393 recstate = MM_SLOW_SAMPLE_DELAY;
394 mm_rec_tolerated_timeouts = 0;
395 break;
396
397 /* Not expected */
398 case MM_FIRST_FAST_SAMPLE:
399 case MM_FAST_SAMPLE:
400 case MM_SLOW_SAMPLE:
401 recstate = MM_IDLE;
402 default:
403 break;
404 }
405 }
406
407 void __attribute__((weak))mm_switch_drive(uint8_t decoder, uint8_t function,
408 uint8_t command)
409 {
410 while(1);
411 }
412
413 void __attribute__((weak))mm_switch_command(uint8_t address, uint8_t command)
414 {
415 }
416
417
418 /******************************************************************************
419 * The end :-)
420 */
421
422
423